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Physical Constants

kg 1.38-10 % J/K Boltzmann constant
Qe 1.602-107 C elementary charge
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Chapter 1

Introduction

Plasma crystals were theoretically predicted by [1] and shortly after that discovered exper-
imentally |2]. They are formed by small spherical dust particles which get highly charged
in a plasma due to collection of electrons and ions on their surfaces, and thus can form
crystalline structures due to their strong mutual interactions.

A subject of interest in the study of plasma crystals is the dynamical behaviour of its
constituents. By visual observation of the pym-sized particles, properties such as particle
oscillation around the mean lattice site and thermal motion can be investigated directly,
giving a direct determination of the phase space of the particles motions. From this,
informations can be extracted on macroscopic quantities such as the particle temperature.

Ergodic behaviour in a plasma crystal is understood as the equivalence of the dynamic
behaviour of a single particle in time and the ensemble of particles as components of the
crystal at one particular time, as it is expressed in general in terms of ergodic theory.
Ergodicity is often presupposed in the interpretation of particle dynamics of a plasma
crystal. A lot of quantities such as particle temperature, the motion under the influence
of the interparticle potential or the charge are derived from series of images taken of the
whole crystal by averaging quantities over the ensemble of particles in each image and
over time [17], although it is not deductively clear whether this approach is valid.

As will be illustrated in this thesis, ergodic behaviour of a physical system is subject to
certain conditions. Measurement times long compared with the intrinsic dynamics of the
system and a closed system, or at least a system in thermal equilibrium with its surround-
ings, are necessary. Following from the last is the exclusion of non-stationary systems for
application of the ergodic theorem. Further, the ensemble is defined as numbers of in-
dependent equal realisations of one basic dynamic process. Plasma crystals are strongly
coupled systems, and though each particle within the crystal is a realisation of a basic
system, the strong coupling as a nature of plasma crystals contradicts with the condition
of independent systems in an ensemble.

In conclusion, an a priori assumption of ergodic behaviour of particles in plasma crystals
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is not a valid assumption.

The aim of this thesis is to investigate fundamental dynamical properties of particles in
a monolayer of particles, i.e. a 2-dimensional plasma crystal, with respect to the ques-
tion whether the equivalence of time and ensemble phase functions is given though the
condition of independent systems is violated. What will not be performed is a proof of
ergodicity itself.

The requirement for the experiment is to generate a stable single layer of particles ar-
ranged in a plasma crystal. External influences should be excluded as far as possible, or
at least the effects should be well defined, to meet the conditions of energetic equilibrium
and stationarity. Long-time measurements exceeding the usual time span chosen for ob-
servations have to be performed, on the one hand to confirm the stability of the system
with respect to stationarity and on the other hand to improve the statistics by a large
number of data points.

The presented work is organized as follows:

Chapter 2 describes basic properties of plasma crystals and the usual description of the
particle dynamics. After that some theoretical background to the ergodic theory is given in
chapter 3 and the conditions for ergodic behaviour are described in more detail, connected
to the question of their fulfillment in the plasma crystal.

The experimental setup is treated in chapter 4. Here importance is put on the estimation
of expected measurement errors and on expected time and length scales of the intrinsic
dynamics of the particles. This gives the possibility to control the dynamical state of
the particles in a plasma crystal according to external experimental parameters from the
outset.

The last part of the thesis, chapter 5, concerns with the analysis of data obtained from the
series of measurements described in section 5.1. Here the important features are at first the
examination of stationarity in the system. Nonstationarities are detected and identified
as trends in section 5.2. These will be removed from the data by decomposition of the
time series of measurements into parts caused by different physical effects. Distribution
functions will be obtained and investigated which express the dynamical properties of
the single particles in section 5.4. Finally, a direct test on ergodic behaviour is carried
out in section 5.5. This test is based on statistical methods and compares the ensemble
of particles in a plasma crystal with the trajectory of one single particle in time, with
respect to absolute values of variables such as spatial coordinates and velocities in the
system.



Chapter 2

Plasma Crystals

A plasma crystal as generated in a laboratory consists of charged spherical, um-sized
particles, which are levitated in the plasma sheath region of a plasma that is generated
by a radio-frequency (RF) discharge between two electrodes. The particles can arrange
themselves in a two or three dimensional lattice structure due to their charge and their
interaction with plasma components. In this chapter, after a short definition of the plasma
state in section 2.1, a thermodynamical description of dust particles in plasmas in terms of
a new plasma component is given in section 2.2. Section 2.3 is concerned with basic prop-
erties of dust particles injected into a plasma and their interactions with other particles
or plasma components.

2.1 Definition of Plasmas

Plasmas can be found nearly everywhere, starting from stars and interstellar space to neon
tubes and candles. It is often called the fourth state of matter among solid, liquid and
gaseous. While a gas consists of free neutral atoms or molecules with a kinetic energy high
enough to prevent any bonds, a plasma is made up of ionized atoms and free electrons. To
generate it, energies of more than 1 eV (= 11600 K) are needed. Ions and electrons have
strong interaction forces due to their opposite charge, which leads to a behaviour unlike
a gas. But not every ionized gas can be called plasma.

The main characteristic of a plasma is its quasineutrality. That requires on the one hand
the same charge densities of ions and electrons, g, n, = q_n_ where n,,_ are the densities
of ions and electrons, respectively, and ¢,/ the corresponding charges. On the other hand,
ions and electrons are free to move, if their mean kinetic energy FEy;, = kg1 is higher
than their potential energy E,o; = ¢4, ® and they will then arrange themselves due to
Coulomb forces acting between them. The lighter electrons will accumulate around the
ions, thus screening the positive charge as seen from the outside. The distance from the
screened charge, where the Coulomb potential has dropped to 1/e of its size at the center
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/60 kBT
/\D: q—gn—_ (21)

The screened Coulomb potential ®(7) at the distance 7 from a particle with any charge

Q is

is called Debye length Ap:

S Q@ 1 &
O(7) = T 7 e (2.2)

with the vacuum dielectric constant €y, the Boltzmann constant kg and the elementary
charge qe.

Only at length scales L larger than Ap the plasma can be called quasineutral and plasma
parameter can be defined. This leads to a restriction of the total number N, of particles
in the plasma: It has to be much larger than the number of particles Np in the Debye
volume (the spherical volume with radius A\p around the center ion). Else the system size
would be just of the magnitude of the Debye length. To summarize, following conditions
hold for an ideal plasmal4]:

® Ny =N_
The electron density has to be equal to the ion density.

o L> )‘D = Ntotal > ND
The extension of the system has to be much larger than the Debye length Ap = the
total amount of particles in the system has to be much larger than the number of
particles in the Debye volume

A shift of electrons and ions leads to a restoring force caused by electrostatic forces.
In consequence, oscillations of the plasma constituents occur at the so called plasma
frequency w, which is proportional to /n_. It is a characteristic quantity which sets a
lower limit to the frequencies of propagating electromagnetic waves.

In the next section plasma will be classified regarding to the particle dynamics and energy.

2.2 Strong Coupling

The behaviour of the plasma constituents is determined by the ratio of their potential
and kinetic energies. This ratio is characterised by the Coulomb coupling parameter I':

<Epot>

b= B

(2.3)

with the mean potential energy (E,,) and the mean kinetic energy (Ej;,). For a system
in thermodynamic equilibrium, the mean kinetic energy per degree of freedom is 1/2kgT.
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The mean potential energy depends on the kind of interaction potential between plasma
particles. In the case of Coulomb forces this is

2

(Epot) = 472 A Coulomb potential (2.4)
0
QQ

(Epot) = T A e Ao screened Coulomb potential (2.5)
TE€Q

with the mean interparticle spacing A. The value of I' now gives a separation of plasmas
into weakly coupled systems for I' < 1, and strongly coupled for I' > 1. Usual plasmas
have I' < 1, as can be seen in figure 2.1.
As an example: To get I' = 1 for an Argon plasma with a mean kinetic energy of Ej;, =
0.026 eV (= room temperature), and assuming a Coulomb potential with a charge @ = +1
de and three degrees of freedom, for the ions a mean interparticle distance A of:
2
A:Qizél-lO’sm (2.6)
6meq Frin

would follow. This would mean an ion density of 10?2 m~—3, whereas the usual density of an
fully ionized Argon plasma is 102° m~2 at a pressure of 2 Pa. An decrease of the ion density
from 10?2 to 10?° m~2 for I' = 1 would demand (FE};,) = 0.007 eV, which corresponds to
a temperature of ~ 80 K. A screened Coulomb potential would even reduce the required
kinetic energy due to the lower mean potential energy. In conclusion, strong coupling
seems to be not easy to achieve in a plasma consisting of electrons and ions with charges
in the range of a few q.

Dusty or colloidal plasmas have a third component besides electrons and ions — micrometer-
sized dust particles. These collect ions and electrons on their surface. The electrons have
a much higher mobility than the ions, thus leading to negative net charges of —1000 and
more elementary charges per um particle diameter on the particle surface [10]. There-
fore the interaction potential between the particles can become much higher than their
kinetic energy. Due to the high mass of the dust particles compared with ions or elec-
trons, they may remain relatively fixed, while ions and electrons move around and form
a flexible neutralizing background for the particles. The coupling parameter for the dust
particle component of the plasma can reach values of more than 1000 (see figure 2.1), and
highly ordered systems, called plasma crystals, can form [1]. These kind of systems will
be described in more detail in the next section.
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Figure 2.1: Overview of plasmas and the corresponding coupling parameter I'. Dusty
plamas are located in the upper left corner (also called colloidal plasmas) with T" > 1.
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2.3 Particles in Plasmas

Processes determining the behaviour of dust particles contain charging processes (section
2.3.1), external forces such as gravity an electrostatic forces (section 2.3.2) and the mu-
tual interaction of particles leading to a definition of phases and coherent motions such
as waves (sections 2.3.3, 2.3.4). Finally a dynamical description of the motion of a single
dust particle is adressed in section 2.3.5.

2.3.1 Charging

Spherical particles suspended into a plasma get charged under the influence of electron and
ion fluxes towards their surface. The particles behave like capacitors with a capacitance

Cp =A4meoRp (2.7)

where Rp is the particle radius. The charge Q)p of a particle is equals to Cp times a
floating potential ®g, which depends on the fluxes I, and I; of electrons and ions onto
its surface. A negative net charge is reached due to the higher mobility of the electrons
[2],[5]- This causes positive ions to accumulate around the dust particles and screen their
charge. The interaction potential ®;p between the particles at a distance 7 is therefore a
screened Coulomb potential [6]

Qr -

—e
4meor

Usual values of the charge are of the order of some —1000 g, per pm particle diameter.

2.3.2 Forces Acting on Particles

Due to gravity, the particles would just drop to the ground. To prevent this, the particles
are injected between two horizontal, parallel electrodes, at which a RF voltage (usually
13.56 MHz) is applied to ignite the plasma. After ignition fast electrons hit the electrode
surfaces and get lost. Due to that the electron density is decreased in that region and
a thin sheath with a positive charge density, ¢,ny > g—n—, builds up. This creates a
potential increasing monotonic from the electrode to the quasineutral plasma bulk. The
net potential in the bulk is zero, so the potential is negative at the electrode surfaces. The
resulting electric field F, points towards the electrode causing an opposite electric force
F, towards the bulk for negative charges in the sheath, while positive ions are attracted by
the negative potential of the surfaces. If dust particles are inserted between the electrodes
gravity pulls them down, as do the ions streaming downward towards the electrodes (ion
drag force). In the plasma sheath region the electric force F,, = QpE, acts on the particles
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with a negative charge (Qp and levitates them againts the downward pointing forces.
The particles are now trapped vertically between the lower electrode and the quasineutral
plasma bulk in the plasma sheath region [7]. In the horizontal direction an electric force
Fy, = QpE) pointing inwards to the center of the electrode confines the particles. This
force is produced by a shaped electrode which creates a parabolic potential well with a
higher potential in a circle around the center of the electrode. An horizontally outward
force Frp = QpErp is given by the electrostatic interparticle repulsion.

In summary, gravity and ion drag is balanced by the electric force in the plasma sheath,
while the confining force acts against the interparticle repulsion as it is schematically
shown in figure 2.3.2.

electrode
F. =
plasma bulk g= Mpg
77777777777777777777777777777777777777777777 F,= QpEv
articles sheath

P region F.= QpEy

confinement -
potential P~ QpEp

shaped electrode

Figure 2.2: External forces acting on a dust particle in a RF discharge. The ion drag force
mentioned in the text is not included.

2.3.3 Thermodynamical Phases

In the thermodynamical description, phase is defined by the ratio of kinetic and potential
energy. For a wide range of parameters such as particle size, particle density and plasma
conditions crystalline states of dust particles in plasmas can be achieved. They have I' > 1
and are therefore called strongly coupled systems. The structure can be a two or three-
dimensional lattice, usual hexagonal close-packed (hcp) or face-centered cubic (fcc) [8],
as shown schematically in figure 2.3. As an example, figure 2.4 shows a real image taken
from a 2-dimensional plasma crystal in the right panel. In the left panel a triangulation
of the particle positions is made, and one can clearly see the hexagonal structure. In the
case of a 3-dimensional crystal, it has been found, that the particles of different layers
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are often aligned vertically. The reason are ions moving downward towards the negative
electrode. The ions stream around a negative charged dust particles, partly captured right
beneath the particle thus producing a positive wake field which attracts a particle in the
lower layer. The attractive force is asymmetric, it works only on the lower particles (since
only beneath a particle a region of higher ion density appears). That way vertical strings
of particles are generated which even move together if the upper particle is pushed as it
was investigated by [9].

a \ b

| @

N

Figure 2.3: 3-dimensional crystal structure: a) hexagonal close-packed and b) face-centered
cubic.

Figure 2.4: Real image of a 2D plasma crystal (right) and corresponding triangulation of
the particle positions (left). Marked in red is the hexagonal structure.

Phase transitions to a liquid occur for I' < T'. & 172 [2]. This requires an increase of
the ratio of kinetic to potential energy. The kinetic energy is determined basically by the
particle temperature. Since weakly ionized plasmas are used for the experiments (only
~ 1077 % of the gas atoms are ionized), collisions of dust particles and neutral gas
atoms outweigh interactions with charged plasma components. Thus the particle motion
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is damped and the dust grains are cooled to the temperature of the neutral gas, which is
usually at room temperature [10]. By decreasing the gas pressure and thus reducing the
number of neutral atoms, the relation of collisions with neutral gas to charged plasma
components gets smaller. The inelastic collisions with the latter heats the dust grains and
increases the mean kinetic energy [11]|. Other heating processes are the fluctuating electric
force of the RF discharge, charge fluctuations and instabilities due to coupling modes [12].

Contributing to the potential energy are the external confining potential and the interpar-
ticle potential. This is valid at least if only motion in a horizontal plane is of interest. A
decrease of the RF voltage at the lower electrode diminishes the strength and the gradient
of the vertical electric field and thus also the radial confining field. The crystal expands
in the horizontal plane and the mean interparticle spacing becomes larger. Therefore the
mean potential energy of a particle is decreased. The interparticle potential is influenced
by the particle size, since the charge is proportional to Rp and thus ®;p oc R%.

In summary, by choosing the appropriate plasma conditions and discharge parameters,
one can decrease I' until the crystal melts as observed in [13| or [14]|. The first melting
transition is not a solid-liquid transition, but to a phase called hexatic. This phase is
distinguished by the loss of long-range translational order, while still keeping long range
orientational order [3]. As I' continues to decrease a liquid phase emerges, where only
short range ordering appears. In the gaseous phase I' becomes < 1 at very low plasma
densities and high RF voltages no transitional or orientational order is left.

Instead of describing the phase by I', which is not very accurate, information based on
spatial distribution of particles can be used. This is done by calculating the pair- and
bond-orientational correlation functions, ¢g(r) and gg(r). g(r) is the numbers of particles
around a choosen center particle depending on the distance; g¢(r) gives an estimate on
the degree of changes in the orientation of the bond angles, dependent on the distance
to a particle. The dependence on r of both is characteristic for solid, hexatic and liquid
phases! [3], and it is easy to get from optical observations.

2.3.4 Waves in Plasma Crystals

Longitudinal and transverse waves have been found in plasma crystals. The longitudinal
waves propagate parallel to the particle motion and are compressional. They can be found
in all thermodynamical phases of dusty plasmas. The transversal waves propagate per-
pendicular to the particle motion and have been observed only in the strongly coupled
regime of liquid and solid phases. The dispersion relations depend on parameters such
as @p, A\p, the damping rate of the neutral gas and the direction of wave propagation
and have been studied by [15]. Other wave phenomenons such as shock waves in plasma
crystals can be found in [16], for example.

Lerystalline: g(r) oc v~ (T gg(r) =const (n(T) < 1/3)
hexatic: g(r) oc e /¢, gg(r) oc r~ (1) (¢&: scale length of translational order, 0 < n(T) < 1/4)
liquid: g(r) o e~"/%, gg(r) ox r="/%6, € = & (&: scale length of orientational order)



2.3. PARTICLES IN PLASMAS 11

Of interest in this thesis are the 2-dimensional solid plasma crystals. The next chapter
will treat the dynamics of such systems.

2.3.5 Equation of Motion of a Single Particle

Suppose we have generated a 2-dimensional (single layer) plasma crystal. The particles
are arranged in a hexagonal lattice as in figure 2.4. Each particle can fluctuate around its
mean lattice position, depending on the ratio of kinetic to potential energy. The equation
of motion can be approximated by the 1-dimensional Langevin differential equation for a
driven, damped harmonic oscillator [17]:

crt) dr(t) 1
o —wr(t) — vy o + M—Pf(t) (2.9)

r(t) is the particle coordinate relative to its mean lattice site (so called displacement),
Mp is the particle mass, wg is the Einstein frequency, vg, is the Epstein drag coefficient
and £(t) is a fluctuating force (e.g. RF field, Brownian motion). The Einstein frequency
is the frequency of the particle oscillation in its nearest neighbor cage combined with
the confining potential and is typically of the magnitude of 3 —6 Hz. For a 1-dimensional
oscillating particle with mass Mp and displacement r () it can be written in dependence of
the forces F; acting on the particle due to the neighboring particles ¢, neglecting external
forces [19]:

=2

-1

1 OF;

M—P“am

Wy = (2.10)

z indicates an arbitrarily chosen direction.

A rough estimation of wg for a screened coulomb potential as in equation (2.8) follows
for small deviations r from the mean lattice site. In this case the restoring force Fz can
be linearised and a spring constant k£ can be derived. Then wg is given by the relation:

wh = — (2.11)

with the particle mass Mp. Later, in chapter 5.1.2.2, k£ will be derived for a linear chain
of particles.

The Epstein drag coefficient vg, is the frequency of collisions with neutral gas atoms [18].
It characterizes the damping rate of particle motion. It can be expressed as

8M p
— 5, Mg 2.12
VEp ’ﬂ'kBTg ,OPRP ( )

Here My, T, and p are the mass, temperature and pressure of the neutral gas, pp and
Rp are the mass density and radius of the particles. § is a factor between 1.0 and 1.44,
depending on the way gas atoms are reflected by the particles. Usually 1.44 is assumed.
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As a result, the motion of a particle is under the influence of a restoring force due to the in-
terparticle potential, a frictional force diminishing Fy;, and a fluctuating force increasing
FElin. Under some restrictions it can be solved for the mean square displacement M SD(t)
[19]. It can be derived from particle coordinates obtained from images by calculating a
mean lattice site 7 for each particle by summing over its nearest neighbors, taking the de-
viation from 7 for each particle in one image, and then averaging over all particles in this
image. This is done for each image, giving the time dependent M SD(t). This technique
requires a system without diffusion, that means particles should never leave their nearest
neighbor cage. An example for the observation of a diffusive system can be found in [20].

In this thesis, not the average displacement will be used, but instead for each particle
a time series of displacements r(t) from the mean lattice site is analysed. The mean
lattice site of a single particle will be derived independent of the neighboring particles as
the average over all positions r(¢) of this particular particle. Before passing over to the
methods of obtaining the time series, the theory of ergodic behaviour in general and in
terms of the application to plasma crystals is treated in the next chapter.



Chapter 3

Ergodic Theory

A physical ergodic system is usually understood — in its simplest form — as a system were
the time average of a quantity taken over a long time is equal to the average of the same
quantity taken over an ensemble of identical independent realisations of the system at one
time.

The following pages will try to explain the connection of this statement to dynamical
properties of a physical system. For this purpose, plasma crystals have the advantage
that it is possible to directly measure coordinates and velocities, yielding the statistical
distributions and giving a direct determination of the phase space.

Section 3.1 introduces some general concepts of describing systems and ensembles, as it
can be found in [21] or [22]. In section 3.2 the definition of the ergodic theorem and the
conditions for ergodic behaviour are given, following [23] in the naming. Finally in section
3.3 the application of the ergodic theorem with regard to an experimental point of view,
in particular for plasma crystals, is discussed.

3.1 Description of a Dynamical System

3.1.1 Hamilton Formalism

In order to illustrate the concept of a phase space, consider the example of a particle
moving in a potential well. This particle is the system of interest. It is restricted to the
area inside the potential well. At any time it will be located somewhere inside. One could
now introduce a phase space for this particle. A phase space is a space in which each
state, defined by all variables of a system, occupies one point. As variables, e.g. position
or momentum, change during time, the system moves on a trajectory in phase space. For
the particle, we assume a 1-dimensional oscillation around the center of the potential (the
point where the potential is at its minimum). Therefore we can describe the particle in a
2-dimensional phase space by a phase function (the trajectory) f(q(t), p(t)). The variables

13
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q(t) and p(t) are the position and momentum at time ¢. Since the particle’s range of motion
is restricted by the potential well, ¢(¢) can not take on every possible value. This also sets
a limit on the particle’s area in phase space. If furthermore the energy of the particle
is conserved, the area in phase space visited by the particle will be determined by its
constant energy, setting a limit on p(t). This is the usual classical mechanics: the state of
the system is described by its generalized coordinates and momenta (¢(t),p(t)) and the
motion is given by the Hamilton formalism:

H(q,p) = constant total energy
d 0H d 0OH
d—z = R d—IZ = v equation of motion (3.1)

One could now describe the particle by setting up its equation of motion and solving
them. This would give an exact specification of the system’s microscopic state at every
time ¢.

In general, a system of N particles is located in a 2 - d - N phase space, where d is the
number of degrees of freedom of one particle.

The phase function f depends on the 2 - N generalized coordinates and momenta

(a1 (t), .-, an(t), P1(t), ..., pn(t)), where q;(t), p;(t) are d-dimensional vectors.

3.1.2 Probability Functions

In statistics, ensembles are used. An ensemble is an amount of identical physical systems.
The system can be any number of particles. While the classical description treats a system
by its equations of motion in phase space, in statistics the ensemble is represented by a
probability function

F(ql(t)a ) qN(t): p1(t), ey pN(t)ﬂ t)

The probability to find a system of the ensemble in a phase volume
dV = dqf...dq}ivdp‘f...dp‘}v
at time ¢ in phase space is given by

F(au(t), - an(t), p1(t), -, Pr (1), 1)dV (3.2)

normalised by the whole phase space volume. One system at time ¢ represents a mi-
crostate, while the whole ensemble is a macroscopic state. This leads to thermodynamical
description of an ensemble.

3.1.3 Macroscopic Averages

In thermodynamics, systems are described by macroscopic averages of microscopic states.
An ensemble of N particles, where each is in its microscopic state ¢&(t1), p?(tx) (i € [1, N])
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at a given time t; yield for a macroscopic quantity A(qd(tx),p%(tx)) the average of all
microscopic states at that time:

(4) = (At p(te))e = /dVA(qf(tk),p?(tk))F(Qf(tk),p?(tk)) (3-3)

where the index e indicates the ensemble average. Since there is no possibility to assign a
certain state to one component of the ensemble, all information on the real motion of a
single particle is lost.

The aim of ergodic theory is now to connect the thermodynamical quantity of the en-
semble with the dynamical (microscopic) states of its subsystems, or in other words to
show what conditions have to be fulfilled by a dynamical system in order to exhibit the
thermodynamical properties which are given by the ensemble averages. For this purpose,
time averages of single systems are introduced (chapter 3.2). From this follows the ques-
tion, what kind of systems are subject to ergodic theory: it only deals with ensembles in
thermodynamical equilibrium. This is essential, since if an average (A). of an instant has
to be compared with an average (A); taken over time, any nonstationarity in A would
influence the time average thus leading to different results.

The next section turns to the ergodic theorem itself, which is the basic part of ergodic
theory, and to the restrictions of it to a special group of systems.

3.2 The Ergodic Theorem

The ensemble average of a quantity A was defined in equation (3.3) as the integral of A
over all points ¢Z, p¢ at a fixed time #;, in phase space weighted by the probability F (g2, p?)
to find any system of the ensemble at a certain point. It can be interpreted as the whole
surface in phase space accessible to the system, since F'is zero for all other points.

The time average of A is defined as the integral over all microscopic states (gf(t), pd(t))
the system ¢ takes on for the time t,, — 0o, so it is an integral along the trajectory in
phase space:
N
)= Jim o [ Al 0.50) (3.4
0

tm—00 m

The ergodic theorem states equality of both averages:
<A>e = <A>t (3.5)

The existence of the integral over time in equation (3.4) is a mathematical question which
is taken account of in books on ergodic theory (e.g. in [23]). However, of interest for the
physicist is the condition for application of the theorem and the physical interpretation.
Some important conditions are now specified.
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1. ¢, = o©

The first problem occurring for the physicist is the time average over an infinite
period, which is not realisable in experiment. But a restriction can be made: every
physical effect of interest happens at a certain time scale 7. The total time %,, of
measurement, and averaging should be much larger than that,

lm > T (3.6)

Then the results of averaging should approximate t,, — oo good enough.

. The system must be closed. If not, the probability function F' itself would be de-

pendent on time, leading to a change of the density of a volume element in phase
space with time (for the case N =1,d=1) :
. O0F OF oF

F =F(q(t),p(t),t) > F = §+a—qq+a—pp7éo (3.7)
From equation (3.2) it follows, that the probability to find a system at point (g, p)
in the volume dV in phase space will change with time. If dV is kept fixed, the
probability density in dV has to change. Real physical systems are never perfectly
closed systems. The condition can be weakened by the same reasoning as in point
1: the time scales of the change of a measured quantity due to interaction with sur-
roundings should be much larger than the relevant time scale 7. Then the influence
should be negligible.

. Stationarity:

A measurement of a physical quantity A over a time interval will usually yield a
time series of values A(t). In a non-stationary system, a mean value (A); calculated
over consecutive time periods of length d¢ will change in time:

(A)e = (A)(2)

If this is compared with an ensemble average at one time, it is very likely to find de-
viations. Therefore ergodic theory excludes non-stationary systems. From the ther-
modynamical point of view, this implies systems in equilibrium. Non-stationarity
can be a property of the system itself, but it might also be an effect at another time
scale as the one of interest, caused by external influences. This is called trend, and
indicates a not properly isolated system. If the reason for the trend can be identified
as independent of the actual dynamics, and if it does not influence the motion on
relevant time scales, it is possible and acceptable to remove it. One example could be
an external force which can not be abolished, like the Earth magnetic field. Trends
are a large problem in the system examined in this thesis, as we will see in chapter
5.2. Essential is the time scale of the trend, as was discussed in point 2.

. No interactions between systems of an ensemble. The systems used for ensemble

averages must be independent realisations of the system. That is the definition of
an ensemble. If there are e.g. correlations between particles, the particles are not
independent systems, but the whole set of particles has to be seen as the system.
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Under the above circumstances a system should exhibit ergodic behaviour. At least, this
is usually assumed, but a general proof is difficult. One attempt to explain the equality of
time and ensemble averages has been made by Boltzmann with the ergodic hypothesis.
He claimed, that a system represented by a phase space trajectory will pass every point
in phase space allowed by its energy for ¢t — oo. If this be so, the whole accessible phase
space would be filled, and the time average taken along the trajectory would for sure be
equal to the ensemble average taken over the energy surface. But it has been shown that
this assumption is wrong. Also the quasi-ergodic hypothesis is not very applicable.
It says, that it is enough that the phase space trajectory is dense. Dense means, the
trajectory does not reach every point in phase space, but comes arbitrarily close to each
(in the mathematical sense). But here a general proof is missing, though it seems to be
valid for a small class of systems [23].

Worth mentioning is the asymptotic ergodic theorem introduced by Khinchin [23].
The general ergodic theorem requires that equation (3.5) is fulfilled by all integrable
quantities A. Only then the system is called ergodic. For each system, some quantities
might be of more physical importance than others, so Khinchin restricted the number
of quantities for which equation (3.5) has to hold to those of most physical interest and
in spite of this restriction calls the system ergodic. He also does not demand a strong
equality, but he allows a small difference ¢ between (A), and (A);, which goes to zero
asymptotically if the number of degrees of freedom goes to infinity:

(A)e — (A)y <€ —= 0 for N - oo (3.8)

The assumption is that relation (3.8) is violated only on a small set in phase space if one
uses only quantities of physical importance. The size of ¢ depends on the measure used
in phase space, and can be derived in terms of set theory. Since Khinchin’s theorem is
completely mathematical, it is difficult to apply to real physical systems and has only
been proved for a small class of systems.

3.3 Application of the Ergodic Theorem

3.3.1 Phase Space of Particles in Plasma Crystals

Since plasma crystals can be observed visually, by taking consecutive images of the crys-
tal a direct measurement of the coordinates (z,y) and velocities (v,,v,) in one plane is
possible. Thus one can measure a 4-dimensional phase space (z, y, vz, v,) directly for one
particle. The single particle is from now on seen as the system, while the whole crystal
is the statistical ensemble. A 4-dimensional phase space is difficult to represent, but the
problem can be simplified. In a crystal, a mean lattice site can be assigned to each parti-
cle. The particle can only move in a small region around this, because the potential well
of the surrounding particles repels it. So one can make a transformation to a coordinate
system with the mean lattice site as the center and describe the particle motion with
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polar coordinates (r,¢) in this new system. This is done for each particle, except edge
particles. These should not be compared with inner particles since they are subject to
other boundary conditions (particles on one side, confinement potential on the other). A
restriction is now made by assuming radial symmetry for each particle. This is valid, if
the potential well of the surrounding particles is approximately uniform. Then the only
relevant motion is the deviation from the mean lattice site, r.

The velocity v is assumed to represent the thermal motion of the particles and follow a
Maxwellian distribution. This kind of distribution is Gaussian (or normal) and depends on
temperature and particle mass only. It will be explained in chapters 4.1 and 5.4.1 in detail.
Here it should be noted, that an ideal Maxwellian distributed velocity is independent of
the position r. Thus it is possible to examine r as the only quantity, reducing the phase
space to one dimension. The velocity, if Maxwellian, could be analysed independently.

For the statistical methods used later, this phase space reduction will be done, but it
has to be kept in mind, that any result is valid for the reduced space, and cannot be
passed over to the real 4-dimensional phase space or any higher embedding of a particle.
That means, if a result is found for r, it is valid for r only and should not be interpreted
as anything else. If for example r or v exhibit equal behaviour for a single particle in
time and for the ensemble, that accounts only for the absolute values of this quantities,
since we are in a l-dimensional space. It is not necessarily correct to follow from this
that particles in plasma crystals are ergodic, but the ergodic theorem is fulfilled by that
particular quantity r respectively v. This is what will be referred to as ’ergodic behaviour
with respect to a quantity’.

3.3.2 Conditions of Ergodic Behaviour

In section 3.2 general conditions have been enumerated which have to be fulfilled by a
system and an ensemble of systems to exhibit ergodic behaviour. This will be repeated
here in particular for the plasma crystal with respect to the experimental possibilities.

1. Measurement time:
The measurement time must be much longer than the typical timescales of interest.
These are mainly given by 7z = 27/wg, the time scale of oscillations in the potential
well, and by 7g, = vg,, the time scale of damping by collisions with neutral gas
atoms. 27 /wg and vg, are typically of the order of 3 - 5 and 1 Hz [15|, which
leads to timescales less than 1 s. It is no problem to exceed that time with the
measurement time.

2. Closed system:
A dust grain levitated in a plasma is not a closed system. A lot of forces act on
a particle, but the important point is that the particle energy stays constant. The
particle in a crystal is in equilibrium with its surroundings and achieves a steady
state regarding to the energy short after it was injected into the plasma. The particle
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is cooled down by neutral gas damping, but in opposite it gets heated by inelastic
collisions with e.g. electrons [17]. So a particle can be seen as a system with a
constant energy, and thus be treated as in a thermal equilibrium with a surrounding
isolated outwards. Still the question remains, whether or not the energy transfers
have an influence on the motion of interest.

3. Stationarity:
Plasma crystals reach equilibrium very fast within a few seconds after the dust
grains are inserted into the plasma [24]. If the external experimental parameters are
kept constant, the state of the crystal does not change. The ensemble of particles
could be assumed to be stationary from that point. But some effects which will be
explained in section 5.2 lead to trends in the time series of particle coordinates.
These have to be identified and subtracted.

4. Interactions:

Interactions between the charged particles of a plasma crystal are the reason why
crystals exist. One would expect that in this case it is not valid to take the crystal
as an ensemble of independent realisations of a system. But on the one hand, the
influences of the particles on each other could be seen as a fixed confining force
which is the same for all particles (except edge particles). Then each particle sits in
its nearest neighbor cage, while the neighboring particles do nothing else as creating
a potential well. But if there is a correlated motion of particles inside the crystal,
this should destroy ergodicity, since then the ensemble averages at each time would
reveal trends related to the correlated motion, while these trends could average out
for the time series measurements of a single particle

The last point shows the difficulty in the application of ergodic theory to plasma crys-
tals as ensembles: The condition of independent systems can not be fulfilled for these
strongly coupled systems. But what can be shown is how strong the interactions influence
quantities derived from the coordinates. In other words: is it valid to do averages over all
particles and all times to derive for example the particle temperature, or is it necessary
to distinguish between time and ensemble averages due to correlations apparent in the
ensemble averages.

In this thesis, we will not calculate any averages, but compare the distribution of mea-
sured deviations r from the mean lattice site of a single dust particle in time and of all
particles in one image. The same will be done for the velocities v. The distributions will
be examined by statistical methods such as the Kolmogorov-Smirnov and Kuiper test
statistics, explained in section 5.5.
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Chapter 4

Experiment and Data Preparation

In section 4.1 the basic experimental setup for plasma crystal experiments is described
and in section 4.2 a short description of the particle tracking is given. The main focus after
that is the identification of experimental errors and their magnitude in section 4.3. Some
basic analysis techniques are summarized in that section, too. Then a rough estimation
of the best range of experimental parameters is carried out in section 4.4 with respect to
the expected measurement errors and the quantities of interest, namely the displacement
from the mean lattice site 7 and the velocity v.

4.1 Basic Setup

An image of the experimental setup is shown in figure 4.1. Figure 4.2 shows sketches of
the setup from the top and side few. The specifications are explained in the text below.

All experiments were performed in a GEC! RF-Reference Cell. This is a standard plasma
chamber for experiments with dusty plasmas [25], shown in figure 4.1. The GEC cell
is a high vacuum chamber with two horizontal electrodes with a separation of 4.7 cm
between which the plasma is ignited. The lower electrode has a diameter of 10 cm and
is capacitively connected to the electronics for generating the RF field. A cap can be
laid on this electrode to manipulate the gradient of the potential. The upper grounded
electrode consists of a metal ring with a glass inlay in the middle. The glass is coated
with a conductive layer of ITO (Indium Tin Oxide). The purpose of the transparent upper
electrode is the possibility to observe the crystal from above with a camera.

Neutral gas flow into the chamber is set by a mass flow controller in the range of 0.1
to 10 sccm (standard cubic centimeters). The gas pressure can be controlled by setting
the position of a valve which leads to the vacuum pump. Here a turbomolecular pump
compresses the gas first, which is important for reaching a low vacuum (= 107° Pa)
between experiments to reduce impurities (see figure 4.2).

Lgaseous electronics conference
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|

J1 .

Figure 4.1: Image of the GEC cell used for experiments.

Dust particles are injected by a shaker installed on the top flange and reaching into the
chamber. It can be moved over the lower electrode for particle injection. A thin wire of
~ 7 cm length was installed horizontally. It could also be moved over the electrode and
is used to push particles aside. This is necessary for experiments with single layers, since
after particle injection always some particles are found in other layers. They can be pushed
away by moving the wire and thus disturbing the potential.

Through a window on the side of the chamber the particles are illuminated by a laser. The
laser beam shines in a horizontal sheet into the chamber between the electrodes (figure
4.2).

Some details are given in the following paragraphs.
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Figure 4.2: Top: Schematic top view of the experimental setup. Bottom: Schematic side

view of the experimental setup
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Electronics A radio frequency (RF) generator running at 13.56 MHz supplies a high
frequency voltage to the lower elcetrode. In between a matching network is installed
(indicated in figure 4.2). It consists of a coil and three capacitors which can be adjusted
to get the optimal relation of forward and reflected power. Due to the capacitively coupling
to the RF generator the lower electrode acquires a negative self bias after the plasma is
ignited, which is caused by the (negative) net current of electron and ion fluxes onto the
electrode surface.

Both self bias and peak-to-peak values of the RF voltage and current are displayed on
an oscilloscope. The power of the RF field determines the strength of the vertical electric
field and the horizontal confining potential by influencing the amount of electrons moving
to the electrode surface. Therefore the levitation height and the horizontal extension of
the crystal can be influenced by changing the RF power. The horizontal confinement is
produced by a cap on the lower electrode, as shown in sketch 4.3. The cap has the diameter
of the electrode of 10 cm and a height of 5.8 mm. A cavity in the center with diameter
58.1 +£0.01 mm and a depth of 1.2 + 0.01 mm manipulates the horizontal potential and
produces a parabolic potential with the minimum in the center of the electrode. The
particles see an increasing potential if they move away from the center and thus are
confined.

confinement
potential

> {
V - electrode

electrode head

particles

Figure 4.3: Electrode cap for manipulating the horizontal potential

Illumination The laser used for illumination was a MoY O3 laser with a maximum
power of 500 mW and a wavelength of 532 nm. It is mounted vertically, together with
two convex and one concave lens (sketched in figure 4.2). The lenses expand the beam
horizontally and focus it in the vertical direction. The vertical width of the beam at the
focal point is approximately 100 z m. A mirror mounted on a slide deflects the laser beam
into the chamber. It can be moved vertically to the height of the particle cloud, and it
can be rotated around the vertical and the horizontal (in direction to the chamber) axis.
Before starting an experiment, lenses and mirror are aligned such that the laser sheet is
parallel to the elcetrodes and the vertical focal point is in the center of the lower electrode.
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Light Scattering by particles If electromagnetic waves hit an object, they induce
dipoles by exciting charges on the surface. The dipoles oscillate with the frequency of the
wave, and thus emit radiation in all directions. This is what one sees as scattered light.
If the object is much smaller in extension than the wavelength of the incoming light, it
behaves like one or just a few dipoles. The emitted waves are all in phase since there is
nearly no spatial difference in the scattering regions, while the intensity of scattered light
is proportional to the fourth power of the wavelength (Rayleigh-scattering).

In our case we have particles much larger in size than the laser wavelength. Here a lot
of point-like dipols are excited on the surface. Each of the dipoles emits radiation in all
directions. Due to the spatial extension of the particle, phase differences occur for scattered
light coming from different regions of the particle. The emitted light can interfere, and
minima or maxima of the scattered intensity appear. The intesity of scattered light is angle
dependent and is strongest in the forward direction. This process is called Mie-scattering.
Details are given in [26].

To give an impression on the particle visualisation, figure 4.4 shows an image of a plasma
crystal levitated above the electrode and illuminated by the laser. The images has been
taken from the side of the chamber.

Figure 4.4: Single layer plasma crystal illuminated by the laser.
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Camera A plasma crystal can be observed optically. This gives the possibility of direct
measurement of the motion of particles in a lattice structure. To reduce the discreteness
of measurement a camera with a high frame rate is needed. For optimal precision of the
particle positions a high spatial resolution of the CCD chip is useful. The camera used is a
CCD (charged coupled device) camera with a progressive scan interline transfer CCD chip.
A CCD chip consists of cells or pixels out of a semiconducting material. When exposed
to light, an amount of electrons proportional to the light intensity is excited separately in
each cell. This leads to a voltage, which is read out at the end of each line for each cell,
and interpreted as a brightness value.

The chip used provides a high vertical resolution by non interlaced scanning. That means,
each line is scanned with a maximum frame rate of 30 fps (frames per second), so the
vertical resolution is the full number of lines. This is accomplished by two separate chan-
nels to which the chip lines are alternately assigned. Both channels can be calibrated by
changing the offset voltage until the image shows no differences between the lines (if not
calibrated, horizontal stripes can be seen which would influence the particle tracking).
The output of 1024 - 1024 pixel black and white images with an effective photosensitive
area of 1003 - 1012 pixel and a depth of 10 bit is directly written into streaming files to
the computer storing device.

The spatial resolution (or magnification) depends on the lens used and on the distance to
the object. It has been measured separately for each experiment by recording a millimeter
scale at the distance used in the experiment. Since the chip has square pixels of size 9-9
pm, resolution is the same for the horizontal and vertical direction.

A filter for the wavelength of the laser (532 nm) is used to minimize the amount of light
reflected into the chip per chance. It has a transmittivity of T = 53 % at A = 532 nm and
T =0 % for A > 545 nm or < 515 nm. So it also cuts out all other wavelength such as
plasma glow or day light, which could overlay the images.

The particles are seen as bright spots of a few pixels diameter in the images. With a pixel
size of 9 © m and a particle size of a few ; m one would expect one illuminated pixel per
particle. In fact in the images the particles have sizes of up to 10 pixels in diameter. This
enlargement is for example caused by diffraction and aberration in the optical components
of the camera lens. Errors of this kind are likely, since the resolution of camera and lens
are at the limit for objects of the chip cell size.

The next section will treat the extraction of data from the images. This and all other
analysis was performed with the programming language IDL. The tracking was already
implemented, but had to be adjusted to work with large data sets as those produced for
this thesis.

4.2 Particle Tracking

The data acquired in an experiment consist of images (or frames) of the crystal as shown
in the right panel of figure 4.5. In these, particle trajectories have to be found. This is done
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in two steps. First, in each frame all visible particles are searched. A particle is identified
as an accumulation of bright pixels. The minimum diameter expected for a particle (in
pixels) and an intensity threshold are set to increase the accuracy of the algorithm by
rejecting small bright spots arising from reflections and by excluding the background
intensity. Values for diameter and threshold are found by hand for each experiment. The
particle coordinates are then derived by taking the intensity weighted center of the area
of all pixels belonging to one particle.

In the second step, each particle found is tracked through the frames by assigning the
particles in consecutive frames to each other, if the spatial distance between them is small
enough, that means if it is likely that the particle moved this distance between two frames.
Since the particles in the crystal are more or less fixed to their lattice sites, this technique
gives good results. Each particle is given a unique number, and thus can be identified in
each frame (see figure 4.5, left panel). The coordinates, particle radius and mean intensity
are stored in an array.

1000 [~
X0
yes X9

8001 35 X8

400

200 5 X7

Figure 4.5: Image of a 2D plasma crystal (right) and numbering of particles after the
tracking (left).

The result of an experiment thus consists of particle coordinates in the images. Since
all analysis will be done on the coordinates or quantities derived from them, the main
question is how exact these coordinates are and what kind of error in the positions is to
be expected. This is the topic of the next section.

4.3 Experimental Errors

In general, measurement errors can be divided into systematic and random errors [27].
Systematic errors affect the whole measurement in the same way, e.g. a power fluctua-
tion results usually in a radial movement of all particles at that time. Systematic errors
should be excluded if possible during the experiment by keeping all parameters constant.
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To detect any irregularities, the important experimental parameters should be recorded
while taking measurements.

4.3.1 Gaussian Error Distribution

Random errors a more difficult to handle, since they exist nearly everywhere as a noise
level. This kind of error is described by a Gaussian (or normal) probability distribution.
By measuring a quantity = repeatedly N times while x does not vary itself, but is subject
to a random error, the measured values z; would be distributed like

1 _@=m)?
x) = ‘e 2% Gaussian distribution 4.1
@) = —— (@)
.
% =\ N7 Z |z; — 7|2 standard deviation of (4.2)
i=1
1 N
T = N Z T mean of x (4.3)

f(z;) gives the probability to get a certain value x;. Thus the x; are spread around a mean
value z. The standard deviation o, is a measure of the width of the distribution and 68.3
% of all points are located in the interval T & o,. Therefore, as a measure of the random
error 0z of a variable x, the standard deviation is taken as a good estimate: dx = o,. This
error has to be propagated through each calculation with the data as follows.

If two independent variables  and y, with random errors dz and dy, are measured, then
the errors propagate into a quantity A(z,y) yielding an error 6 A given by

A 0A \?
2 - _
(0A)° = (6:): dr + o (5y> (4.4)
0A \? [0A_\?

Where 4.5 holds for uncorrelated errors dx and éy. The term %(5% . g—;éy vanishes in that
case.

For finite NV, the mean and standard deviation are subject to statistical uncertainties.
The difference between an uncertainty and a random error is, that the error has a source,
but the uncertainty appears because of the finiteness of the number of measurements. If
a randomly distributed variable x is measured N = 5 times, it is possible to measure by
chance only values from the left side of the error distribution. The mean is then shifted to
that side. By increasing N this get more and more unlikely, and the measured z; should
approximate the continuous distribution f(z). The statistical uncertainties in T and o,
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can be expressed as:

0T = \/% (4.6)
do, = m (4.7)

where ¢! should be either known from a theoretical model for the distribution of z or it
can be approximated by o, calculated from the data z with equation (4.2) for large data
sets. The proof for the validity of this approximation can be found in [27].

The measured value T is an approximation of the theoretical mean Z;, one would expect
from a theoretical description of the system (for example a gaussian distribution with
mean zero). Ty, should lie in an interval Z & z - 0,/v/N, if the theory is correct. The
interval around T given by the standard error of the mean times a factor z is called the
confidence interval. By choosing z, the width of the confidence interval can be adjusted
with respect to the desired accuracy. The larger the interval is, the more likely it is
that it includes the expected value T;,, but the statement is not as strong then (e.g.
one can choose z = oo, but then the statement is useless because everything lies in this
interval). Usually a confidence interval of £1.96 - 0,/+/N is chosen, corresponding to a
statistical security of 95 %. That means that in 95 % of all cases the conclusion that T is
a reliable estimation of Ty, is correct if 7, actually lies in the confidence interval. Usually
different errors contribute to a measurement, for example the statistical uncertainty and
k independent random errors dz. In this case, the errors sum up like:

010 = \/(255)2 + Z dx? (4.8)

4.3.2 Analysis Methods

If possible, before performing experiments the expected measurement errors should be
found out. This has been done for the plasma crystal experiment. Before discussing that,
some basic analysis procedures such as binning data into histograms and fitting a theo-
retical function as a model to a data set are described.

4.3.2.1 Histograms

An approximative probability distribution for a variable x measured N times can be
obtained by counting how often z happens to be in a certain interval z + dz (also called
a bin) within the scale of possible outcomes of the measurement. This number, divided
by N, gives the probability to find any measured z; in the interval x 4+ dz. By repeating
the measurement very often, a more or less continuous distribution should emerge, if the
data can be described by probability functions in fact.
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The uncertainty is the width of the bin. Thus a small bin size is desired, but to approximate
a continuous probability function, the bins should be large enough to contain enough
points (at least more than one), and to smooth small fluctuations. For data which are
assumed to follow a normal distribution, one usually takes a range of £3 - o, around the
mean as a reliable scale for possible values x;. This should only be done if in fact most
of the data are within that interval. Otherwise an appropriate range should be chosen.
This interval is divided into Ny, bins with respect to the amount of data points, and the
data points falling into each bin are counted and normalized by N yielding the histogram
h(C). ¢ represents the middle points of the bins and is used here to distinguish it from the
measured x.

h(¢) can now be compared with an assumed theoretical probability distribution f,(x)
to test if it can be used as a model for the data. Usually one estimates the parameters
relevant for fy,(z) (e.g. mean and standard deviation for a gaussian distribution) from the
data and uses these as start values for a fit of the function fy,(z) to h(¢) at the discrete
points (;. This procedure is described in the next section.

4.3.2.2 Fit Procedure

Starting from a theoretical function fy,(z,ay,..,a,,) dependent on m parameters, one
tries to find the parameters ay, k € [1,m] such that the resulting values of f, are the best
approximation of a given A((). The fit procedure used was a combination of a least square
fit and a gradient expansion algorithm. It is implemented in IDL and works roughly as
follows (see 28] chapter 15):

1. Choose a model fy, for the fit. The model can be any mathematical function assumed
to be the right one for A({). The model function must depend on the variable z and
on m parameters ay.

2. Estimate good starting values for the parameters ao and calculate the function
values fi,(C, @10, ..., @mo) = fin(C,a0) at the points ¢ for these.

3. Calculate the least squares or x? test statistic from h(¢) and fi,(C,a0) which is

defined as
Nb'in
X2 _ Z (h(CJ) - -Z;.t;l(CJJ aO))2 (49)
=1 i

o; is the statistical uncertainty of each data point j. For a histogram the uncertainty
is of the order of the bin size. x? is a measure for the difference between both function.
If they agree good enough, the fraction becomes 1 (then the difference is of the size
of the uncertainty) and x? is of the magnitude of Npy;,.

Ofen

Ba are derived yielding the change of x? for a change in the

4. Now the derivatives
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parameters:
szn

_QZ fth Cy,ao) 0fin (¢, ax)

aak

4.1
aak (4.10)

The aim of the fit procedure is to change the a; in the direction of the gradient as long
with respect to minimize equation (4.10) until the change of x? is below a user supplied
tolerance level. Then fy,((, a;) with the latest a; is taken as the best estimate for A(().

One comment on the interpretation of x? is given. x? should be of the magnitude of the
number of bins N, minus the number of constraints N, arising from the theoretical
model. N, is the number of independent parameters of the fit function. Then v =
Nyins — Neon is called the number of degrees of freedom and y? = x? /v < 1 is the
condition for a good fit. x? is called the reduced x?.

4.3.3 Measured Error Distribution

The two main sources contributing to the experimental error in plasma crystal experiments
are the spatial discreteness of the measurements and the pixel-noise of the camera. The
first is the uncertainty of the estimation of particle coordinates due to the finite extention
of the CCD chip cells. The second one arises from the finite temperature of the chip,
which causes the intensity values of the chip cells to fluctuate due to thermally excited
electrons. This effect is called pixel-noise and is present also if no light shines on the chip.
It can be examined by taking ’black’ images while the lens is closed which allows a direct
investigation of the pixel-noise.

Another approach of the error estimation, which includes nearly all sources, is the follow-
ing: Some particles are dropped on the electrode surface while no RF field is applied and
are illuminated with the laser. A series of images is taken and the particles are tracked
with the same algorithm used for all other data. Now for all particles the differences from
one frame to the next are taken. Since the particles do not move, the differences should
be zero. Any deviation from zero gives an estimate of the effective error (caused by pixel-
noise, tracking errors or vibrations of the experimental setup). The result is shown in
4.6 a). A histogram of all differences has been made, and a Gaussian distribution as in
equation (4.1) has been fitted to the curve with o, and 7 as fit parameters. The x? of the
fit was 1.21 and thus a bit larger than the optimum of 1.

By examining the image one can see that the gaussian distribution seems not to be the
best model for the error distribution, since the tails are not flat, but have local maxima
symmetrically around zero. It has been found that they appear only for the intensity
weighted tracking. If the tracking is done with a geometrical estimation of the particle
location, the total error is larger but Gaussian. This problem will be treated below.

Another problem becomes visible in the close-up of the error distribution in plot 4.6
b). The middle peak also has broad tails deviating from Gaussian. It appears that two
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Figure 4.6: Left: Random measurement error distribution (normalized to unit area) and
gaussian fit, Right: Close-up of the inner part of the error distribution

Gaussian distributions contribute to the error. In figure 4.7 the error distribution has
been computed separately for the z and y direction and reveals a different error for each
direction. Here the x2 was 0.89 for the z, and 0.33 for the y-direction, so both fits can be
accepted. The standard deviations o, and o, as an estimation of the errors are listed in
table 4.1. The values derived from the data by equation (4.2) are given for comparison.

fit | data
o, [pixel] | 0.013 | 0.046
oy |pixel] | 0.046 | 0.094

Table 4.1: Standard deviations obtained by the fit and calculated from the data directly

The difference of errors in x and y was not expected, but could be explained by the
CCD chip of the camera. It has two channels for readout while the consecutive lines are
alternately attached to one channel. If the channels have a different offset the intensity
values will jump up and down from line to line, which is the y-direction. This could expand
the error distribution for y. Since the effect of changing the offset seems to be intensity
dependent, is is difficult to completely prevent that difference.

Returning to the outlying maxima, it has been observed in a test experiment, that they
occur in principal for badly illuminated particles, e.g. particles which are at a slightly
different height than the rest and thus at the edge of the laser beam. Figure 4.8 shows an
image of this test experiment, and the particles with broad trails are marked in the plot
of particle positions on the left. One can see in the right image, that these particles are
nearly not visible. In that experiment, the error seemed to be even larger than the particle
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Figure 4.7: Error distribution (normalized to unit area) and Gaussian fit estimated sepa-
rately for the z- and y-direction

motion. To diminish this error, attention was payed to obtain a good illumination of the
whole particle layer during the experiments.

For further experiments, a flatter confining potential could be helpful. The confining
potential is parabolic and particles in the center are levitated not as high as particles at
the edge, thus leading to problems with uniform illumination (in figure 4.8 this effect can
be seen, the marked particles are either at the center or the edges).

To take into account the dependence on the direction in the image and possible effects
due to the tracking, an error of 0.1 pixel is taken as the error in the particle positions for
both = and y.

dz = 6y = 0.1 pixel/m = 0.9 pm/m (4.11)

m is the magnification of the image. Equation (4.11) rather overestimates the values
obtained by the fit. The statistical uncertainty of 6= was smaller than 10 2. The quantity
in ym is obtained by multiplying with the pixel size 9 um of the CCD chip cells. From
now on, only the expression dz is used for the error of x and y.

4.4 Estimation of Experimental Parameters

The random error pretends a particle motion where there is none. That might be mislead-
ing in the interpretation of data. Parameters like gas pressure, RF power, magnification
and particle density must be chosen such, that the real particle motion exceeds the error
far enough to be uniquely identified. In this section some restrictions for the parameters
are derived. The result of this chapter has to be seen as a rough estimation. It is used
only for getting an idea of the range of parameters to be set in the experiment in order
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Figure 4.8: Right: Image of the crystal in the test experiment, Left: Particle positions in
that frame. Marked on the left side are particles with local maxima in the distribution of
the frame to frame displacement

to not measure only the error.

4.4.1 Basic Quantities

The quantities of interest which should be resolvable are the maximum deviation of a
particle from its mean lattice site and its displacement from one frame to the next in
dependence on the experimental parameters. These two values are crucial for the validity
of a measurement. If they are in the range of or even smaller than the error dz, one will
get just the error distribution as a result.

Assume a particle is located in a screened coulomb potential well generated by two sur-
rounding particles with the same charge, but no interactions or energy transfer are allowed.
Also friction is neglected, but the particle gets a constant temperature 7.

We will use 7 = /(2 — 2,u)? + (y — ymu)? as the particle coordinate with respect to its
mean lattice site (2, Ym) in the 2-dimensional crystal, assuming radial symmetry inside
the nearest neighbor cage. The error dr of r is the same as Jx:

2 2
or? = (L _ xW) ox + (7?; _Tyml) or? = 6z
r

as follows from equation (4.4), but the number of degrees of freedom is reduced to 1 in
this consideration. Further the approximation of a linear chain of particles is used as it is
shown in the sketch 4.9.

According to the equipartition theorem [21], each degree of freedom of a system at tem-
perature T has an average kinetic energy

1
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The potential well is given by the interparticle potential ®;p(7) at a distance 7 between
two particles
Qp i

= 47r€0(f)e AD (413)

where A is the interparticle distance (distance between two lattice sites). It determines
the potential energy E,.(7) = Qp - ®rp(7). Note that ®;p is defined for the distance
between two charges, not for the distance to the mean lattice site. At (%, ymi) lies the
minimum potential ®;p(A) (figure 4.9), with the interparticle distance A.

®rp(7)

A-r

-

A

- | ———>

ORNOTHEG

mean lattice mean lattice mean lattice
site 1 site 2 site 3

Figure 4.9: Linear chain of three particles.
The question is now with respect to experimental parameters,

1. How large is the average displacement (Ar) from one frame to the next?

2. What is the maximum deviation r,,,, a particle can move away from its mean lattice
site?

4.4.2 Dependence of Thermal Motion

(Ar) should be dominated by thermal motion as long as the time steps At is small.
Further a Maxwellian velocity distribution is assumed for the particles velocity v in one
dimension:

FMl (U) = e 2ov (414)

where o, is the standard deviation of the velocity v. Fis1(v) is independent of the position
r of the particle (see chapter 5.4.1). The particle can thus has a mean thermal velocity

(v) =4/ 32:7: (4.15)
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with Mp is the particle mass. This defines the average frame to frame displacement
(Ar) = (v)At (4.16)
where At is the frame rate of the camera. Required is now
(Ar) > 0r = dz = 0.9um/m (4.17)

with the magnification m. The value for dr is taken from the error estimation in chapter
4.3.3. With equations (4.15) and (4.16) inserted equation (4.17) yields

2kgT _ 0.9u/m 0.9u/m | Mpm
At 4.18
Vitpr =m0 " T Aar V 2keT (4.18)

The temperature and pixel-noise thus give a limit on the magnification to use.

A quantitative estimation is done in figure 4.10 for At = 1/29 s and Mp = 5.5- 107"
kg. The values correspond to the experiments done. The kinetic energy kg7 is varied
between 0 to 0.085 eV (= 0 to 990 K). The figures show the dependence of (Ar) on kgT
(right panel), and the magnification versus kg7 (left panel) for equality taken in equation
(4.18). The plots must be interpreted as follows:

The magnification one has to choose to get a (Ar) for a given temperature, which exceeds
the pixel-noise by far, must be much higher than the curve in 4.10 a).

Figure 4.10 b) shows the (Ar) which can be expected for different temperatures.

25
20F

room temperature [eV] ]

magnification

0.0, - C e ] ok o v o
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
kinetic energy kel [eV] kinetic energy kel [eV]

Figure 4.10: a) Magnification m vs. kinetic energy kgT, b) (Ar) vs. kinetic energy kgT
and pixel-noise for m =1
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4.4.3 Dependence of the Maximum Displacement

In section 2.2 the Coulomb coupling parameter I" was introduced. If I is known, it defines
the relation of mean kinetic energy to mean potential energy. This relation can be used
to estimate the average deviation (r) of the particle from the mean lattice site.

The mean potential energy is given by the potential at the interparticle distance:

QY _a
(Epot) = Qp - Prp(A) = 47re§Ae AD

(4.19)

For a strongly coupled system such as the plasma crystal and one degree of freedom follows
for I’

_A
_ 2Qpe *p
N 47T€0AkBT

2
e T
Py s Rl (4.20)

>1

This applies to the average energies. Nevertheless the particle can move up the potential
well as long as its thermal energy exceeds the change of E,, during this step, since
equation (4.20 is valid for the averaged energies only:

1
5T > A, (4.21)

When equality holds, 7,4, is reached. Now an expression for AE,, has to be found. In
the model with a chain of three particles the base potential ®, is given by the potential
at the mean lattice site produced by both neighbors:

= Epoto = QrPo (4.23)

The potential energy at a place r is
Epor(1) = Qp@rp(A+7) + @1p(A — 1) (4.24)
For small deviations r the change of the potential energy can be written as
AEpot = Epot(T ) - Epot,O

= Qp (Brr(A+ 1)+ Brp(A—1) —2-B(A)) > %/@T (4.25)

In this consideration the equality holds for the maximum distance r,,,,; the particle can
move away from the mean lattice site. To get a handy expression for r,,,, some simplifica-
tions have to be made. First, ®;p(A+7)+®(A —r) is expanded in a Taylor series around
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r = 0. This consideration is valid for small deviations r. It will lead to an underestimation
of 7,4:- But the purpose of finding the parameter range will be fulfilled sufficiently:

Qrp(A+7)+Prp(A—T)

a(I)[P 182(13113 2
=®p(A)+ —|,—0 - T
p(A) + oy lr=0 " T 5 o2 lr=0 7" +
a(I)[P 162¢1P 9 3
‘HI)IP(A)_ or ‘7“20'7" iw‘mo'r —f—O(T)%
0?P
~ 2-¢IP(A)+GT;P|T:0-T2 (4.26)

The linear term cancels out due to the symmetry of the model. The second derivative at
the position = 0 is given by

?®p, A+xp)? 1
—52 Ir=0= ®rp(4) (( ANy ) tx (4.27)

For AE,, and equality in equation (4.25) follows

2
AE,; = 2-Qp®p(A) + Qp®rp(A) (<A+AD) +L) 2

Alp A2
—2-Qp®p(A)
A+Xp)\? 1
= QpPp(A) (( y) D) +E> 2 (4.28)
D
- %kBT (4.29)

Solved for 7,4, and with kK = A/Ap and the definition of T we get:

B kT A2)2
maz = [ 9Qp®p(A) || A2+ 2)0pA + 2202

/Az
VT Varok+n? (4:30)

Here also 7,4; > 07 should be fulfilled.

Now the difficult part starts: correct starting values for the parameters have to be chosen,
and their dependencies on real experimental parameters like pressure and RF power have
to be found. These were taken mainly from [10]. The assumption is a linear dependence
of A\p and I' of pressure and peak-to-peak voltage and a connection between the mean
interparticle spacing and Ap.
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Dependencies

1. Ax2\p=>Kk=2

2. ne o< pUp,: The electron density is proportional to the neutral gas pressure p times
RF peak-to-peak voltage Up,. It follows for \p and A:

€okpT Tleo PoUppo
Ap = = — = Apo - 0 4.31
D g2ns DO . DO 21Uy ( )
pOUp pOUp
A =2\p=2\pg- | 220 = A, - 0 4.32
v o0 P1Upp1 ’ P1Upp,1 ( )
3. With 1. and 2. follows for I':
2.02e2 Q2e? U
P 29PC7 P _ . [21V1 (4.33)
47T€02)\DkBT 47T€02)\D0kBT poUpp 0 p()Up ,0
The charge could be approximated by the particle radius, but this relation is not
used here.
With that we get for r,,q,:
r o A 1 - 2ADO <p0Up ,0)3/4 (4 34)
e \/f V 10 V10T pp 1 '
Required is
Tmaz > 0 = 0.9um/m (4.35)

To increase the quality of statistics the number of particles Np in the field of view should
be as large as possible. It is connected to A as follows:

The area of the field of view as seen by the camera is A = A’/m? (A’: chip size).
Each particle in a hexagonal crystal structure has an area of

1 A
Ap=3-n-2-a- tan(%) =6+ (5)” tan30° = 0.87- A” (4.36)
for n = 6: number of edges, a = %, a = 30°.
For Np particles in the field of view follows:

A)
A_m = Np-Ap=Np-0.87-A? (4.37)
A’ P1Upp,1

m2087A0 Po Upp,o

= Np = (4.38)

For given p;, Uy, the numbers of particles can be derived.
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Estimation of starting values The following values except the last were taken from
[10] as starting values:

e py=2.7Pa

Upp,() == 60 V
App=0.85-10%m - A=1.7-103m

Qo =17-10% q.

ksT = 0.026 eV (2300 K)
e A’=1024-1024-9-10"!2 m? = 8.49 - 10~° m?

= [y = 8550

With the above starting values equation (4.34) is evaluated graphically in figure 4.11 for
a wide range of p;Up, 1. The pressure ranges from 1 to 5.9 Pa, U, ; from 40 to 140 V. The
plot shows 7., versus Uy, while the colors indicate the change of p;. For comparison,
the location of the pixel-noise for the magnifications m = 1, m = 1.5 is included. Np is

calculated for the same ranges and m = 1, m = 1.5. It is presented in the plot 4.12 versus
Upp,l-

200 7

pressure increase
R —

—— pixelnoise for m=1.0

. pixelnoise for m=1.5

Figure 4.11: Maximum distance from mean lattice site vs. Uy, 1. The colors indicate dif-
ferent pressures from 1.0 Pa to 5.9 Pa.
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Summary of Parameter Estimation As follows from figure 4.10 a) the magnifications
choosen for data recording should be much larger than m = 0.4 to exceed the measurement
error if room temperature is assumed. This is not a problem, since usually at least m =1
is choosen. Further (Ar) is nearly almost higher than the expected pixel-noise.

Tmaz S€€ms not to be strongly dependent on both U, and p;. The change between the
extrema for AUp,; = 100 V and Ap; = 4.9 Pa is just 2 um. But still 7 is exceeded by
far, which was the required condition.

The number of particles in the field of view shows a stronger dependence on Uy, ; and p;.
To reach Np > 100, a peak-to-peak voltage > 100 V and a pressure > 4 Pa should be
choosen for a low magnification of m = 1, whereas at higher magnifications in the range
of 1.5 a high Np is difficult to reach. Since the lower resolutions does not break condition
(4.35), it should be concluded in favour of higher Np to take the low magnification for
experiments. What also has to be considered for the parameter settings is that too low
pressure and voltage will lead to melting of the crystal, since I' decreases with /p-U.
Another restriction is the plasma itself. At low gas densities the plasma destabilizes due
to lack of ionized atoms while at low voltages there is not enough power to ionize the
gas. From observations in test runs follows a minimum pressure of 1 Pa, and a minimum
power at the RF generator of 1 — 2 W (this sets also the voltage at the electrode).

Np is restricted to the upper limit by the fact, that due to the radial confinement, particles
will arrange in a 3-dimensional crystal, if Np is too high. It showed up that for obtaining
a single layer of particles, Np ~ 200 is a realistic value for the particle sizes used and
m=1.
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Figure 4.12: Np vs. Uy, for two magnifications m = 1.0 (top) and m = 1.5 (bottom).
The colors indicate different pressures from 1.0 Pa to 5.9 Pa.



Chapter 5

Analysis

The analysis of the data sets consists of different steps, starting with the dynamical prop-
erties of the macroscopic crystal as a whole, down to the single particles as systems in
themselves. The aim is to prepare and investigate the data in order to make it possible
to give a statement about ergodic behaviour of particles in the plasma crystal with re-
spect to the condition of a stationary system and with the restriction of strongly coupled
components of the ensemble.

In section 5.1 the specifications of the performed experiments are given. A first rough
analysis of the data with regard to relevant length and time scales of the system is done,
based primarily on the experimental settings.

Section 5.2 treats the plasma crystal as a macroscopic system which acts on external
influences. This behaviour can be identified in section 5.2.1 as different trends in the time
series of averaged spatial coordinates and velocities. The time series are then decomposed
into the motions common to all particles and the intrinsic dynamics of the single particles.
This is done by the removal of trends in section 5.2.2.

After common trends are removed from the data, the dynamical behaviour of the single
particles is the subject of interest. The particle motion is described by the time series of the
displacement of a particle from its mean lattice site and by its velocity. First the particular
time series of each particle is tested for stationarity as an preliminary condition of ergodic
behaviour in section 5.3. Then the distribution functions describing the dynamics of the
particles will be investigated in section 5.4.

The last step is a test for ergodic behaviour of the particles in section 5.5 with regard to
their displacements and velocities. The test is carried out with usual statistical methods.

43
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5.1 Performed Experiments

A 2-dimensional plasma crystal with a hexagonal structure was generated and used for
analysis. No particles were located above or below of the layer. Attention is payed to
the fact, that a large number of particles is needed for good statistics with regard to
the ensemble. Long-time measurements were recorded to further improve the statistics by
obtaining long time series of particle coordinates. In section 5.1.1 the detailed experimental
setup and settings for this experiment are described. After that the expected typical length
and time scales are estimated from the measured data and experimental settings in section
5.1.2. A comparison of two magnification settings is done in section 5.1.3. The results of
this chapter are finally summarized in section 5.1.4.

5.1.1 Specifications

Starting from the basic setup described in chapter 4.1, the details for the data acqui-
sition used for analysis are given here. Table 5.1 gives an overview of the experimental
parameters.

Power and Pressure In our experiments we used an Argon discharge. The gas flow
into the chamber was reduced to a low rate of 0.5 sccm. The valve for pressure control
was set fixed to keep the pressure constant at 4.25 Pa. No gas flow and a closed valve
would be best to decrease the influences on the crystal, but then the plasma quality
due to enhanced gas impurities. The radio frequency at the lower electrode was at 13.56
MHz. Six measurements have been made for three different peak-to-peak voltages and
two magnifications. Since the RF generator supplies an unstable voltage for low powers in
the range of 1 W, an additional damping device with a damping of 6 dB was connected
between RF generator and matching unit. The generator can thus be operated at higher
powers without increasing U,,. Unfortunately the result was not as well as hoped. Still
power fluctuations appeared that affected the plasma crystal.

Self bias voltage Usp and effective RF peak-to-peak (pp) voltage U,, and current I,,, were
read from the oscilloscope with an accuracy of ~ 5 %. The measured values are damped
by the electronics by a factor D = 46.3 dB (power damping). fm, is displayed as a voltage
Uspp = Iy - 1 M. The voltage and current values applied to the electrode are calculated
by using the relation for power damping;:

Pin = Pout : 10D/10dB (51)
for input and power P,,, P, respectively. With P ~ U? and P ~ I? follows:
= Up = (Opp) - 1077208 (5.2)

1

Loy (1M a 0I,pp> - 10P/2048 (5.3)
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Particles and Illumination The particles were Formaldehyde-Melamine monospheres
with a diameter of 8.9 & 0.1 ym and a mass of 5.5 - 107® kg. They are relatively large
particles and are expected to aquire a charge ~ 13000 q. (see chapter 2.2). The radial
confinement was contrived by the metal cap on the lower electrode described in chapter 4.1.
The laser was set to 213 mW. The maximum of 500 mW was not used, because the laser
sheet can trap the particles or push them if the power is too high, thus influencing the
motion.

Camera Images have been taken at two magnifications for each voltage setting to test
whether the effect of the pixel-noise, which becomes smaller at higher magnifications,
makes any difference in the analysis. The camera was set to a frame rate of 29 frames per
second (fps) and a exposure time of 30 ms. At each run 10000 images have been taken,
of which 9999 could be used for analysis (= 345 s). The first image has to be rejected
because it has a large time difference to the next due to the initialisation of the frame
grabber.

A lens with a fixed focal distance of 200 mm was used. To increase the maximum magnifi-
cation, spacer rings where inserted between lens and camera. These increase the distance
between lens and CCD-chip. Thus the camera can be moved closer to the object but still
can be zoomed in.

The magnification had been obtained by taking images of a defined scale with exactly the
same camera and lens setting as used for the recording of images during the experiments.

Table 5.1 lists the specifications of the experiment. Numbers are given to the different
measurements, and these will be referred to later. For experiments Ia,Ila,Illa spacer rings
with 8 and 27.5 mm length were used, for the others a third ring with 14 mm was added.

‘ Experiment Number ‘ Ia ‘ Ib ‘ IIa ‘ ITb ‘ IIIa ‘ IIIb ‘
self bias [V] =277 | =28.0 | —=33.0 | —=34.2 | —=37.5 | —36.8
voltage (pp) [V] 121 | 122 | 142 | 146 | 155 | 153
current (pp) [nA] 357 359 405 421 442 442
forward power at
RF generator [W] 37 30 47 42 60 47
pressure |Pa) 4.25 4.28 4.25 4.28 4.25 4.29
magnification 0.992 | 1.494 | 0.992 | 1.494 | 0.992 | 1.494
resolution [mm /pixel| | 0.0091 | 0.0060 | 0.0091 | 0.0060 | 0.0091 | 0.0060

Table 5.1: Experimental settings.

The a-series includes the measurements with low camera resolution. The b-series was
recorded at the corresponding higher resolution, but approximately the same power set-
tings as before. What should be noted is that the power supplied by the RF generator
is much lower for the b-series, but though yielding nearly the same U,, as the related
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a-measurements. It was found out that the problem must be an internal error of the RF
generator, the cause of which could not be identified yet. But important for the experiment
are the peak-to-peak values as they are in fact applied to the electrode.

5.1.2 Expected Scales

In chapter 4.4 the frame to frame motion (Ar) and the maximum deviation 7,4, from
the mean lattice site were introduced. With pressure and peak-to-peak voltage of the
experiment these quantities can be derived as an estimate of the relevant length scales.
This is also a test on the validity of the approximations done, since the mean interparticle
spacing A can be estimated directly from the images and can be compared with the
assumption A & 2Ap used in the estimation. Also the Einstein-frequency wg = 27vg and
the Epstein drag coefficient vg, will be calculated since they determine the typical time
scales of a plasma crystal experiment.

5.1.2.1 Length Scales

Thermal motion Equation (4.16) with p and U,, from table 5.1, the particle mass
Mp =5.5-107"% kg, At = 1./29 s and by assuming room temperature 7' = 290 K yields
for (Ar)

QkBT
Mp’ﬂ'

for all measurements. Due to effects mentioned in chapter 2.3.3 the particle temperature
could be much higher in fact. Later it will be derived from the velocities which are obtained
as the difference between consecutive frames divided by the time difference between the
frames, At. As comparison, the motion pretended by the pixel-noise dr = 0.9um/m would
be of the magnitude of

ATip expected = At = 2.35 ym (5.4)

or = 0.907 yum for m = 0.992
or = 0.602 ym for m = 1.494 (5.5)

Even for the low magnification the noise is still smaller by more than a factor of 2. The
error in the velocities, v/267/At, is in the range of 37.2 and 24.7 um/s respectively while
(v) = (AT)theapectea/ At is 68.15 pm.

Maximum deviation The derivation of r,,,, contained other useful quantities as the
coupling parameter I' or the screening length A\p which are treated here, too. With equa-
tion (4.34) the expected maximum deviation from the mean lattice site is derived. To es-

timate Ap as 1/2 times the interparticle distance, for each frame A is derived as , /ﬁ

with the image size A and the number of particles in the field of view Np under the
assumption of a hexagonal lattice (see equation (4.37)). Then the average A of all frames
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is determined with the standard deviation taken as the error.

Two values for Ap have been calculated: Ap ¢z, = A/2, as it was assumed in the parameter
estimation in section 4.4.3, and Ap est = Apo - v/PoUo/p1U1 (equation (4.31)) with py = 2.7
Pa and Uy, = 60 V. Also the coupling parameter I is derived with equation (4.33) and
finally the ratio kK = A/Ap st which should be approximately 2 if the assumption A = 2)p
is fulfilled in the plasma crystal. Panel 5.1 shows all quantities in dependence of U,.

The maximum deviation (upper right image) is in the range of 5 um and thus sufficiently
larger than the error dr. The interparticle distance decreases slowly with increasing U,
accordingly the same hold for Apcs. Apesp €xceeds this value not very far, thus both
approximations yield the same results. The coupling is very strong with I" of the order of
2 - 10* for all measurements and increases with peak-to-peak voltage. x lies in the range
of 2 to 2.1, increasing with U,,.

‘ Experiment Number ‘ Ia ‘ Ib ‘ ITa ‘
Np 190 110 194
Tmaz |pm] 5.03 5.03 4.91
A |pm] 800+10 | 834+18 | 783+ 7
AD,exp [1m] 400£5 | 391+9 | 378+4
ADest [pm] 401 399 370
r 19939 20068 21618

| Experiment Number [ IIb | 1Illa | MHIb |
Np 81 197 82
Tmaz |pm] 4.93 4.88 4.88
A [pm] 791 +£13 | 757£10 | 753+ 6
AD,eap [1m] 47+7 | 395+£5 | 376+ 3
ADest [pm] 364 355 355
r 21962 22565 22515

Table 5.2: Quantities estimated from the data. Np: number of particles in the field of
VieW; T'maz: €xpected maximum deviation from mean lattice site; A: mean interparticle
spacing; Ap ezp = 2A: screening length; Ap s screening length estimated with equation
(4.31); T': coupling parameter (equation (4.33))
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5.1.2.2 Time Scales

Einstein frequency The Einstein frequency can be estimated by the approximation of
a linear chain of particles as introduced in chapter 4.4. In this consideration the restoring
force acting on a particle for a small deviation r from its mean lattice site can be written

as
Fr=—grad(AE, = —k-r (5.6)

with the spring constant k£ and the potential energy AE,,;. Using the expression for AE,,
as it was approximated in equation (4.28) and the relation w% = k/Mp it follows

A+p]? 1
Fgr = —grad [QP‘I)IP(A) ([ A)\DD} + E) -T2] =—k-r (5.7)
A% + 2 pA +2)7
= k == 2 . (QP(I)IP(A) ? 2 D
ARD N
Qb 2
= 2 (242 2 .
<47reOA3e 2+ 26+ /{)) (5.8)
where kK = A/Ap. Therefore wg is given by
wp = | 22+ 2+ 12)—T s (5.9)
= MP 47T60A3 )

It will be used here to estimate the frequency of oscillations of a particle in its nearest
neighbor potential well. Mp is given by the experiment as 5.5+ 10713 kg, k = A/Ap = 2
will be used since it. Since the charge is not known exactly, in figure 5.2 vy = wg/27 is
shown for an interval of charges in the range of 1 — 2 - 10*q,. v is the frequency in Hz,
while wg is the circular frequency given in rad/s.

vi ranges from 2 to 5 Hz for different charges and interparticle distances. This yields for

the time scale 75:
1 2
TE = —=—

=0.2,.,05s (5.10)
Vg WE

Epstein frequency The Epstein frequency is the frequency of collisions of dust particles
with the neutral gas atoms, i.e. it determines the damping rate, and was given by equation

(2.12):
[ 8m p
=9 J 5.11
VEp 7T/€BTg ppRp ( )

With the mass of the argon gas atoms m, = 39.948 u = 66.34 - 10727 kg, temperature
of the neutral gas T, = 290 K, neutral gas pressure p = 4.25 Pa, material density of the
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Figure 5.2: vg in dependence of the particle charge for k = 2 and A from table 5.2. a)
low resolution, b) high resolution

dust particles pp = 1490 kg m 3, particle radius Rp = 4.45 - 10~ m and, as mentioned
in chapter 2.3.5, § = 1.44 follows for vg,:

vgp = 5.997Hz (5.12)
The timescale 7g, is therefore:

TEp = 1/vg, = 0.167 s (5.13)

Both time scales are very short compared with the measurement time of nearly 6 minutes
and reasonable far from the time resolution of the camera of 1/29 = 0.034 s.

5.1.3 Comparison of Different Magnifications

One series of measurements had been taken at a higher magnification but the same pres-
sure and voltage settings as the other series. Since the number of particles in the field
of view is rather small at high magnifications, the statistical investigations will suffer. In
the last section it has been found that length and time scales derived on the basis of the
interparticle distance taken out of the measurements coincide. Here the velocities, namely
the absolute velocities, will be compared among each other for the corresponding voltage.
The aim is to investigate how much the error dz in the coordinates, caused by pixel-noise,
influences the measurements at low magnifications. Though from the parameter estima-
tion in chapter 4.4 one would expect a small error in z and y even for magnifications of
1, this might be different for the velocity, since the error v = v/2dz/At is higher by a
factor of v/2.



5.1. PERFORMED EXPERIMENTS 51

If the error has large effects on the velocity distributions at low magnification, one would
detect a difference in the the mean value ¥ between high and low magnification, since the
error would shift ¥ to lower values. Since the error is the same in every frame for every
particle, v is calculated as the mean over all particles Np and frames Ny:

Np Ny

_ 1 1
7 S (5.14)

i=1 k=1

Figure 5.3 shows v plotted versus the different voltages and for both magnifications. The
value for data set Ia (diamond at 121 V, m=0.992) deviates by 20 % of the corresponding
value for Ib (m=1.494). But all values of the data sets with low magnification lie within
the error bars of the measurement with corresponding high magnification. For significant
influence of the pixel-noise a lower v would be expected for the low magnification. Since
all values coincide very well within the errors, it can be concluded — not considering any
other effects leading to differences between both series — that the pixel-noise does not
affect the data sets recorded with low magnification much more than it affects the data
sets with m = 1.494.

& m=0.992
X m=1.494
0.20 -
o
€
c0.151 -
| >
0.10 -
0.057‘”\‘””””\HH‘HH\HHHH‘\HHHH‘
120 130 140 150 160

Ues [V]

Figure 5.3: Mean absolute velocity v vs. Uy, as comparison for both magnifications. The
error bars include the measurement error.

5.1.4 Summary

In summary, the length scales expected should be resolvable compared to the measurement
error, even for the lower magnification, as it was expected from the parameter estimation
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done before, since

(Ar) > or
Tmaz = or (515)

was found.
The time scales of motion are far below the measurement time %,,cqs

e K tmeas ; TEp < tmeas (516)

so the condition of long measurement times compared with the relevant dynamical time
scales from chapter 3.3.2 is fullfilled.

The system investigated is strongly coupled which might destroy ergodic behaviour since
the condition of independent systems is violated.

The measurements at different magnifications reveal the same macroscopic properties as
it is expected for experiments with the same parameter settings. Note that the series
at different voltages were recorded consecutive for one magnification setting. Then the
magnification was changed and the measurements repeated. Though the system did not
change during that time with respect to the quantities derived in this chapter. This indi-
cates a stable system in equilibrium with its surroundings, so the condition of a ’closed’
system as it was interpreted in chapter 3.3.2 is also fullfilled.

From now on especially the measurements at low magnification are treated, since the
smaller measurement error dx = 0.9um/m for m = 1.494 had no significant relevance on
the quantities derived in this section. The disadvantage of the high magnification is the
small number of particles visible in the field of view of the camera, which decreases the
validity of the statistics where large numbers of data points for the ensembles are needed.

5.2 Stationarity of the Plasma Crystal

In chapter 3 it was emphasized that stationarity is a necessary condition for ergodic
behaviour. Stationarity of a time series z(¢) means in general, that for any choosen starting
time ¢y, the statistical properties of z(tx), .., 2(tx+n) do not change in time (k,n € N,n >
k). But stationarity is not an overall property visible in all variables of a system. A time
series of measurements can be stationary on certain time and length scales, but non-
stationarities become visible on others.

Trends are non-stationarities usually happening at much larger time and length scales
than the dynamics of the system. In an ensemble of particles, common motions due to
external influences can appear. They normally do not affect the dynamics on small scales,
but make it difficult to handle quantities like the displacement from the mean lattice site,
since they cause a time dependence of the mean lattice site itself and the nature of this
dependence is not known in the beginning.
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In this chapter averages will be taken over all particles. This is only used to identify
common motions of the particles on large scales, which are not subject to the examination
of ergodic behaviour. The results of this chapter are to be interpreted only in the sense of
detrending, not as a dynamical description of a single particle. Two methods of detecting
trends will be discussed in section 5.2.1. The identification of the reasons leading to
observed trends and the removing of them from the data will be subject to section 5.2.2.

5.2.1 Detection of Common Trends

Trend analysis is done on the displacements r(t) and the velocities v(t).

The displacement 7;(t;) of a particle ¢ at a time ¢; is defined as the absolute differ-
ence \/(zi(t) — Tmii)?) + (i(t) — Ymu,;)? of the particle position to its mean lattice site
(Tmi i, Ymi,i), where T ; and ym,,; are calculated as the average over the whole time series
of coordinates and & € [1, Ny]:

1 1
T, thx(k) Ymi, Nt;y(k) ( )

The velocity components v, ;(t), v,i(t) of a particle are obtained by the difference of the
coordinates between two consecutive frames k, k + 1 divided by the frame rate. They
determine the absolute velocity v;(t).
v (t) _ xi(tk—H) - ‘T'L(tk) v (t) _ yi(tk-l-l) - yz(tk)
ot At T At

vilt) = \faalt)? +,(1)? (5.18)

5.2.1.1 Running Mean and Standard Deviation

To test a time series for stationarity or trends, a good option is to calculate quantities
like mean and standard deviation averaged over sliding windows (consecutive overlapping
intervals) in the time domain. Due to averaging, statistical uncertainties have to be taken
into account. In a stationary time series, the averaged quantities should not deviate from
each other within the errors. Usually values within a confidence interval of 430 around
a global mean are accepted as good enough to origin from a stationary time series. o is
here the standard error of the mean over all windows. It was introduced in equation (4.6)
as a standard deviation obtained from a theoretical distribution or from a large amount
of data points divided by y/n where n is the number of points contributing to the global
mean.

Running mean 7;,, and standard deviation o, ;,, are calculated for all Np particles (i =
1,...Np,w = 0,..., N, — 1, N, number of windows) of a data set and for two window
sizes L of 300 and 900 frames. The total length of a trajectory is N; points. Thus we can
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write for the mean and its error:

~

-1

1 5
Tiw =+ i(thwsi) 5 OFiw = 4+ [072 COrigwy, 1
T, Lj ri(trwj) T, \/r + (3 —\/f) (5.19)

Il
)

and for the standard deviation:

1 L—-1
Orjiw = m ZO ‘Ti(tL.w-i—j) - Fxi,wP )
J:

O-.
00riw = |02+ (3 ——==)? 5.20
o = (foe 6y 520

with the measurement error 6r and the statistical uncertainty included in the terms for
the errors dr;,, and do,;,. 0r is equal to the dz estimated in section 4.3.3 as it was
shown in section 4.4.1. For the velocities v;(t) the procedure is the same, while here the
measurement error is §v = /207 / At.

As an example, figure 5.4 shows the typical development of the running mean and standard
deviation for one particle.

To detect trends common to the time series of all particles, averages are taken over all
particles for each window w and the error is propagated. Any common motion will add up
in the averaged quantities and reveal a significant feature, while random or uncorrelated
fluctuations will be smoothed.

1 & N 6Fiw ) si \°
Fo == Tiw , OFy= )+ (3 — 5.21
Np = , Z_: ( Np > ( \/NP) ( )

1 Np Np 50_ . 2 Sa 2
Orw = Oriw , O0pu= — ) 4+ (3 = 5.22
’ NP; ;( Np ) ( \/Np) (5.22)

s; and sz are the standard deviations of the 7;,, respectively o, ;,, for all particles 7 in one
window. The factor 3 is choosen as the confidence limit in the statistical error. In figures
5.5 and 5.6 7y, Oy, Uy and o,,, are plotted. The global mean for the window size 300 is
displayed as a green line together with the confidence interval (dashed green lines).

The displacements show clear deviations in the mean 7,,. Notable is that the fluctuations
of the standard deviation o,, are rather small. This indicates that the nonstationarity
detected is not due to a change of the shape of the distribution of r, but more due to a
trend which is not connected to the particle dynamics. In contrast, a nonstationarity in
the intrinsic dynamics of a system would be expected to change the shape and thus the
standard deviation of the distribution describing the system.

Further the running mean seems not to be dependent on the window size, but the standard
deviation is. A linear trend could cause this behaviour: By increasing the window size the
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Figure 5.4: Example of the development of running mean and standard deviation for one
particle. a) T4, b) Oriw, €) Viw, d) Oyiw. The error bars include the position error dr
and dv respectively, and the statistical uncertainty. For 7, ,, the error was too small to be

visible.

mean is not affected in this case since the points spread symmetrical around the mean. But
the distance of the points to the mean gets larger, thus the standard deviation increases.

The velocities v in figure 5.6 reveal nearly no trend in the averaged quantities, and here the
difference between the window sizes is very small for both mean and standard deviation.
Except some randomly appearing peaks which are caused by external influences, as will

be explained later, common trends are not overwhelming.
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Figure 5.5: Running mean 7, (left images) and running standard deviation &,,, (right
images) for two window sizes. Data sets Ia, Ila, Illa (low resolution). The error bars
where only plotted for L = 300, if both data sets where too close.
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Note that for each averaging an error has been derived. From this a quantitative estimation
of the deviations from the global mean is obtained. The global mean is given by the average
over all windows of the corresponding quantity, e.g. 7 for the displacement. The upper
and lower limit are the measurement error propagated into 7 and the statistical error
of 3 times the standard error of the mean, as in equation (5.21). It is denoted 7. The
deviations are now quantified by calculating the absolute difference between each point
7w and the mean over all windows 7. This is done for the window length 300 frames for
mean and standard deviation of displacement and velocity. The derived difference should
be smaller than 67 for a stationary system. Therefore

Y=y —7—0r<0 assumed for stationary systems (5.23)

The percentage of ¥ smaller zero is plotted in figure 5.7 for displacements and velocities
of each data set.

The assumption of a trend in the displacements is confirmed by the small percentage of
values within the confidence interval, while the velocities are not affected much by that.
The small percentage for the standard deviation of the velocity of the measurement at
121 V is very likely caused by the sharp peaks in o, ,, not by a shift.
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Figure 5.7: Percentage of differences ¥ smaller zero for a) running mean and standard
deviation of the displacement, b) running mean and standard deviation of the velocities.
For stationary systems = 100 % should be smaller zero.

As a second estimator for nonstationary behaviour, the frequencies of the system will be
investigated by Fourier analysis methods.
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5.2.1.2 Power Spectra

A power spectrum gives information on the frequencies appearing in a system. It is ob-
tained by Fourier transform methods.

Fourier Transform A function A(t) in time domain can be connected to a function
H(v) in the frequency domain by the Fourier transforms [28]:

H(v) = /_ T hertdr bt / H(v)e "y (5.24)

with v is the frequency, ¢ the time and ¢ is the imaginary unit.

For discrete data sets with an even sampling rate At and N sampling points the function
h(t) can be described by hy = h(kAt) where k € [O — 1]. Also the Fourier transform
is discrete now, with the frequencies v = nAv = %, n € [-N/2,4+N/2|. The negative
frequencies yield the same results as the positive if h(t) is real. Equation (5.24 is now
described by:

N— N-1
] 1 —27ikn
H, = H(nAv) kz e2mikn/N p = ~ ;Hne 2mikn/N (5.25)

which is the definition of the Fast Fourier Transform (FFT).

A limit for the frequencies given by the sampling rate A¢. A signal with a periodicity of
the sampling rate will always be the same in each measurement, so it will be detected as
a constant, even if it is for example a sine wave. The highest possible frequency which can
be detected, has its maximum and minimum amplitudes at consecutive sampling points.
The upper limit is called Nyquist critical frequency and is defined as

1

= — 2

Periodic motion at higher frequencies can falsify the result since it is transformed to a
different frequency than its real.

On the other hand, a motion which happens only one time during the whole measurement
can not be identified as happening with a certain frequency. To detect the frequency, the
motion has to appear at least two times during measurement, e.g. a sine wave has to do
one full period. Depending on which effects in a system one wants to observe with Fourier
methods, the measurement time has to be choosen properly. Further the number of data
points N of the time series determine the frequency resolution Ay = 1/(NAt).

The leakage of frequencies into other frequency intervals is called aliasing. By using win-
dows in the time domain, one can decrease aliasing. The windows are usually functions
convolved with the data which cut the data into segments thus preventing the leakage of
lower frequencies.
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Power Spectrum The power spectrum of a quantity Ay in the time domain is defined
as the values of power P at the frequencies v, given by the Fourier transform H,, of hy:

1
P(v) = <[ 1Hal* + [Hy-n[] - for ne€[1,N/2—1]
1

H,|?

P(Vn):ﬁ n

for k=0,N/2 (5.27)

It is usually normalized such, that the sum of all P(v,) is equal to the mean squared
amplitude 1/N - 37" |hg|? of the hy.

The power spectrum can be used as an indicator of nonstationarity, but not as a proof. If
at low frequencies there is considerable power, there are motions at long length scales (low
frequencies) in the system, such as trends can be. Further it can give useful informations
on periodicities in the system.

A first example shows the power spectrum for r; of one particle, and the velocity power
spectrum for the same particle in figure 5.8. The Nyquist frequency is 14.5 Hz for a
sampling rate of 1/29 s for all measurements. The frequency resolution is 0.0035 Hz for
N = 8192 points (this values improves the speed of the FFT).
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Figure 5.8: Power spectrum of a) r(¢) and b) v(t) of one single particle. The power is
normalized to the mean squared amplitude.

For each particle, the power spectra P; of the displacements r; and velocities v; are com-
puted. These are then averaged over all particles for each frequency and plotted in figure
5.9.

Interpretation of the Power Spectra The velocity power spectra reveal nearly flat
spectra for all data sets, which coincides with a distribution of data points similar to
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white noise (Gaussian distribution). Further an increase of noise towards lower frequencies
can be seen. To emphasize this, the fraction of power located in the frequency ranges
[0,0.01], [0.01,0.1], [0.1,1], [1,5], [5,10], [10,15] Hz is displayed in the graph 5.10 a) for
the displacements and in b) for the velocities. Here also a slight increase of power at
low frequencies emerges, while the increase of power for the displacements is much more
pronounced. This could be an indication of nonstationarities such as long-term trends,
which appear at low frequencies but exceed the smaller range of intrinsic motion with
respect to the power.

Three sharp peaks are found located approximately at the frequencies 4.1 Hz, 8.3 Hz and
12.5 Hz. These appear in all data sets and for both velocity and displacement (the peak
at 12.5 Hz is hidden in the high frequency noise for the displacements). Since they are
visible for all data sets equally, and do not depend on the physical quantity r or v, they
are likely caused by an external influence. The two peaks at 8.3 and 12.5 Hz could be
the first and second harmonics of the 4.1 Hz peak (harmonics appear at k- v,k € N).
Also possible is a camera vibration in resonance. The 12.5 Hz peak could be caused by a
vertical oscillation of the particles. To emphasize the peaks, the maximum values of power
in frequency intervals of 1 Hz from 0 to 15 Hz are displayed in figure 5.11. The mentioned
peaks are marked.

Finally at 6 to 7 Hz a bump appears in the power spectra of the displacements. It is also
common for all data sets, but does not emerge in the velocity power spectra, where at best
a slight drain can be seen around 7 Hz. The frequency range matches the expected values
foe the Einstein frequency of oscillations of particles around their mean lattice site. Power
increases within this bump, so the energy of the crystal must be increased by an event
happening at that frequency. It has been found, that a correlated oscillation of particles
in the crystal can couple to that frequency. This is also called a saturated instability and
was found by [14].

However, it is difficult to assume any reasons for the features of the power spectra unless
the trends in the system have been investigated. After the detrending procedure we will
repeat the spectral analysis and compare the structures to detect any correlations of
frequencies which vanished with common trends.
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Figure 5.9: Power spectra of displacement (left) and velocity (right), averaged over all
particles. Data sets Ia, Ila, IIIa (low resolution). The y-axis has a logarithmic scale.
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spectra.
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5.2.1.3 Summary

The time series of averaged displacements reveal strong nonstationarities likely caused by
trends on long time and length scales. This is emphasized by the deviations of the running
mean and by the analysis of the frequency spectrum which shows an increase of power
towards low frequencies.

The velocities seem to be rather stationary with respect to the averaged quantities, but
the power spectra show the same feature as the displacements although weaker by some
magnitudes. But if a trend contaminates the particle coordinates it will for sure also affect
the velocities derived from them, though it can not have high influences if it happens on
much larger time scales than the frame rate which determines the velocity.

The reasons of the nonstationarities could partly be connected to common particle mo-
tions, which will be the subject of the next section.

5.2.2 Removing of Common Trends

Removing trends from a time series is a lengthy business. The danger is to remove not
only the trend, but part of the dynamics too. Filters, for example high pass or smoothing
algorithms, should only come into use, if one knows how they affect the parts of the time
series not subject to the trend. Since not much is known about sources, time or length
scales of trends in plasma crystals, the detrending must be done more carefully by finding
theoretical models for the trends and apply them to the data.

Thus a measured time series Zyeqs(t) can be splitted into

Tmeas (t) = xtrend(t) + xfluct(t) (528)

Were Tyrenq(t) is any time dependent trend and z . (t) a motion fluctuating around the
trend, which is the quantity of interest. In the following chapters, Zyrenq(t) will be identified
in more detail for the plasma crystal. This will be done for the original coordinates x(t)
and y(¢) in the images. Trends which can be identified will be fitted as models to the data.
After each section, the treated trend is subtracted from the coordinates, and the 'new’
coordinates are used as input for the next step. These will be named = and y again to
simplify the terms. Displacement r(¢) and velocity v(t) for further investigation will then
be derived from the detrended time series.

In figure 5.12 one can see the reason for the large deviations of 7,,. The trajectories of all
particles of a data set (ITa) are drawn for 2000 consecutive frames. Visible becomes a ro-
tation of the whole crystal, which will be treated in section 5.2.2.1. Further an oscillation
of the whole crystal in the confining potential well is assumed, but not visible in the plot.
The sharp peaks in the trajectories will be subject to chapter 5.2.2.4.
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Figure 5.12: Overlay of particle trajectories of 2000 consecutive frames. The colors from
red to yellow indicate the propagating time.

5.2.2.1 Rotation

The rotation of the crystal has been observed as an effect due to magnetic fields [29]. Here
the earth magnetic field By is likely to be the source of rotation. Due to the high electric
field in the chamber, a v x Bg drift acts on the ions. These drag the dust particles with
them and cause the crystal to rotate within the confinement. For low U,, the rotation
is a rigid body rotation ([29]) and could easily be substracted for all particles. It will be
examined if this is the case here.

With the rotation equation (5.28) can be written as

t ro t res t uc 3
y(t) yrot(t) yrest(t) yfluct(t)
The index rest indicates trends not identified yet. For a rigid body rotation, the angular

velocity Q is constant for all particles. By introducing polar coordinates R(t),©(t) one
can write down the transformation

Trot(t) = R-cos(@g+ Q1) + X Yrot(t) = R-sin(@g + Q1) + Y (5.30)

with X, Y are the coordinates of the rotation center, R is the constant mean radius of the
particle to (X,Y), ©g is the starting angle and 2 is the constant angular velocity. The
aim is now to fit a rotational motion to each single particle trajectory by the use of the
fitting procedure described in section 4.3.2.2 with values for 2 and (X,Y) as result. The
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function used for the fit was:

(z:(t) = T)* + (ws(t) —7,)° =
[X; + Ricos(©,0 + t) =7, + [V + Risin(0;0 + Q) — ;] (5.31)

with z;,y; denoting the mean of the coordinates x;,y; for one particle. The parameters
estimated by the fit were R;, 0;,0, §2; and the coordinates of the center of rotation, X;, Y;.
The index 7 emphasizes that all values are obtained for each particle in particular here.
Starting values were derived by finding a center of rotation with geometrical methods,
and then transforming x(¢) and y(¢) to polar coordinates, which yielded R and ©g. Then
the velocities of © were derived as the difference of © in two frames, divided by the time

interval At between two consecutive frames. The mean of all velocities gave an estimate
of Qz

The advantage of the above function was, that both particle coordinates = and y are
connected. This restricts the parameter range and the fit gives more secure results, since
the parameters as R;, ©;0 and €2; should not vary for x and y of one particle. One
more restriction is, that €2,X and Y should be the same for all particles, if the model
is correct. In figure 5.13, the values obtained for (2; are displayed. As global angular
velocity (2 the median of all 2; is taken. The median is derived by taking the middle of all
obtained values. It has the advantage that far outlying points are not weighted as much
as by the mean value. In this case, points which deviate strongly must be seen as wrong
fitting results, since there can be just one center of rotation. The mean absolute deviation
1/Np- "M% |Q; — Q| is taken as a measure for the deviation of €; from the median (as the
median, the mean absolute deviation is not as sensitive to outlying points as the standard
deviation).

§; is plotted versus R; in figure 5.13, and one can see that outlying points are located at
low R;. That means they originate from particles located nearly at the rotation center.
There it is difficult to fit a rotation due to the small distances the particles move on the
circle.

Further a linear fit to ;(R;) justifies the assumption of a rigid body rotation, since the
gradient of the line is close to zero (see also table 5.3). Figure 5.13 shows the angular
velocities versus U, for the different data sets in comparison in the lower right panel. The
rotation seems to decrease slowly for higher voltages.

The location of the center of rotation is displayed in panel 5.14, where X is plotted versus
Y; as obtained for each particle. Here also the median had been taken as common value
and is marked in red. In that diagram also the motion of the rotational center between
the different measurements can be observed. This motion is induced by the change of Up,.
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‘ Experiment ‘ Ia ‘ ITa ‘ I1Ia ‘

Q [rad/s]

(median) —0.0023 —0.0020 —0.0017
+0.0002 +0.0001 +0.0003

Qi [rad/s]

(lin. fit to ;(R;)) —0.0024 —0.0021 —0.0018

gradient of

Q(R;) [rad-s~'m™'] | 9.3-107% | 1.54-107> | 1.41-107°

Table 5.3: Q obtained as median from the ; and fit parameters of the linear fit to Q(R;)
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Figure 5.13: €; vs. R;. The dashed lines are linear fits to ©;(R;). The median of Q; and
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5.2.2.2 Oscillation in the Confinement Potential

The next step was to assume an oscillation of the whole crystal in the external confinement
potential. This would show up in a translational motion of X and Y:

i) = Goo)+ Gzio) = i)+ Go) 099

Ltrans (t) = X(t) y  Ytrans (t) = Y(t) (533)

The time dependent X (¢), Y (¢) have been found by taking the X and Y from the previous
section as starting values, and calculating for each particle a mean radius R;. Then in each
frame k the R; of the visible particles Npj were taken and following function was fitted
to them for each frame k:

with

-2

Ry = (Tig — Xe)* + (Yik — Yi)? (5.34)

This function makes use of the assumption that, in the case of constant particle radii, the
above condition has to be fulfilled in every frame k by all particles 7 visible in that frame.

The fit yielded time dependent X (¢) and Y (¢), which are plotted in figure 5.15 for data
set Ia, Ila, ITTa. There are some sharp peaks visible, which indicate a fast non-periodic
shaking of the whole crystal. This looks like an external disturbation, very likely caused
by power fluctuations of the RF generator (see chapter 5.2.2.4).

The translational motion of the rotation center happens at the highest time scales recorded.
Thus it differs from other trends which only become visible on large time and length scales.
Note that by subtracting X (¢) and Y (¢) from the time series of z;(¢) and y;(t) respectively,
the motion of particles is transformed into a moving coordinate system. Fluctuations such
as camera vibrations will be eliminated in this coordinate system, too.
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Figure 5.15: X(¢) (left) and Y(¢) (right). The dashed line is the median value of X or YV
from the first fit (equation (5.31)) which was used as starting value here.
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5.2.2.3 Flows

After eliminating rotation and translational movements, there still seemed to be a trend
left, at least for some particles as indicated in figure 5.16. A linear fit

iL'Z(t) = l‘i,() + Cw,i -t yz(t) = yi,O + nyi -t (535)

has been made on the trajectories. The gradients c,;,c,; are represented as arrows in
figure 5.16, which show the direction and the relative strength of the motion for each
particle. For comparison the magnitude of the arrows is illustrated in the lower right part
of the image.

There seems to be a slow linear flow of groups of particles in opposite directions in the
crystal. The problem here was that a common model could not be found, though there is
clearly visible spatial connection of the flow for the particles. Therefore, for each particle
the gradient of the linear fit to this particle has been subtracted.

The reason for the flow could be either a shear flow or an artefact due to the former
detrending procedures. If the particles did not rotate on pure circular trajectories but on
elliptical orbits around (X (t), Y (¢)), the subtraction of a circular motion could pretend a
flow in the crystal. An indicator for this is the time scale of the motion. In data set Ila
the linear flow for a particle with a gradient yields a velocity of 9.75 - 1072 mm/s. The
angular velocity for this data set was 2.0 - 1073 rad/s = 11 - 10 mm/s for a radius of
approximately 5.5 mm. Both velocities are of the same order of magnitude, which also
accounts for other particles. It is difficult to decide from this if a real physical flow or an
artefact of other detrending is the case here.

5.2.2.4 Radial Contractions of the Crystal

The changing of the radius observed in figure 5.12 could be identified as a problem with
the RF power generator. Small fluctuations of the power caused the crystal to contract
(’breath’) through an influence on the strength of the confinement. There is no way to
fit a model to this disturbation. Even if it would be possible, the question arises whether
the fluctuation of the particles around their mean lattice site is somehow affected by the
change in the confinement. The best way seemed to be to cut out the disturbed segments
from the trajectories of all particles.

To locate the radial fluctuation in time as a common motion, again polar coordinates have
been calculated from the detrended time series, all particle radii R;; in each frame k are
summed up, yielding a ’total’ radius Ry for each time step:

Np g

Ry =) Riy (5.36)
=1

This has been normalized by division by Ry (total radius in the first frame), and plotted in
figure 5.17. Every time a 'breathing’ appeared, the mean radius shows larger fluctuations.
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Figure 5.16: Flow of particles represented as arrows for data sets Ia (upper left), ITa (upper
right) and IIIa (below).

Overplotted is the total radius calculated for the original (not detrended) data. Some of
the fluctuations are not clearly visible in the Ry, but showed up in the original data. The
pieces of trajectories which were removed are marked in colors.

5.2.3 Result of Detrending

The result of the detrending is graphically shown in figure 5.18 for one data set. The
trajectories of all particles in the field of view are plotted, as they are located in the
crystal, after the different steps of trend removing.
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In summary, following model was fitted to the particle trajectories:

z(t) = X(t) + R- cos(©g + Qt) + ¢yt + = iyt (t)
y(t) =Y (t) + R -sin(Og + Q) + ¢yt + Yfruer(t) (5.37)

It includes a rotation of the whole crystal, a translational motion of the crystal due to
oscillations in the confining potential and a common flow of groups of particles. Also a
radial fluctuation with respect to the center of rotation has been treated.

The coordinates used from now on are only the fluctuating parts « et (t) and y e (%),
without the segments identified as disturbed by power fluctuations.

From this, for each particle ¢ with a trajectory length of /V; points the mean lattice site
Tnii, Y and displacement 7;(t) are calculated:

1 Ny 1 Ny

Tl = N Z Z fruct,i (L), Ymii = - Z Yrueti (k) (5.38)
k=1 k=1

rit) = (@ rueni(t) — Tt ) + (Y grueni(t) — Yt )? (5.39)

The velocities for further examination are calculated from the detrended time series as
described in equation (5.18). To give an impression on the kind of data sets which will be
used for further analysis, the time series of the displacement 7(¢) and the absolute velocity
v are displayed in figure 5.19 for one particle before (left panels) and after (right panels)
the detrending procedure.

Repeat of the Test for Stationarity As a final test, running mean and standard
deviation are calculated with the same technique as in section 5.2.1 and presented in
figures 5.20 and 5.21 for the time dependence of the quantities, and in figure 5.22 the
percentages of deviations ¥ from the mean as defined in equation (5.23) smaller zero are
shown.

Though the deviations of the running mean of the displacements are smaller by the order
of 100, and instead of a linear course now fluctuate around the mean, still only a maximum
of 60 % of the values of 7, lie within the confidence interval for data set Ia, while this
value decreases strongly for data sets Ila and IIla. The standard deviations 6, ,, also still
deviate for different window sizes and reach a maximum of 70 % of points close enough
to the mean.

The situation for the velocities looks better by far with regard to a stationary time series.
Nearly 100 % of all point for ¢ and &,,,, are located within the lines indicating the allowed
deviation.

Before a last statement is given to the stationarity of the system, the power spectra are
analysed.
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The frequency analysis done before is also repeated and displayed in the diagrams 5.23
where the spectra are shown, 5.24 with the total power in the frequency ranges |0,0.01],
[0.01,0.1], [0.1,1], [1,5], [5,10], [10,15] Hz and the maximum power in frequency intervals
of 0.1 Hz5.25.

The sharp peaks at 4.1, 8.3 and 12.5 Hz stayed for the displacement spectra. For the
velocities the last one vanished, but it can be concluded that the origin of the peaks will
be, as discussed in section 5.2.1.2, externally triggered.

The high frequency noise in the displacement spectra vanished. It might have corresponded
to the oscillation of the whole crystal, which was fitted to the data as a frame-to-frame
motion, so it happened at the highest frequency, namely the camera frame rate. This
could have appeared as a high frequency noise due to aliasing. Also the low frequency
noise in the velocity spectra is gone.

What is left is the increase of power to low frequencies in the displacement spectra, which
will be interpreted as a nonstationarity, since this coincides with the results of the running
averages. Also the bump at 7 Hz stayed, so it was not induced by one of the detected
trends, but more likely due to the correlated particle oscillation explained before.

As a final conclusion we state that though a lot of common particle motions were detected
and subtracted from the data, still nonstationarities are left in the average displacements.
The velocities instead can be called stationary. Further the analysis of the frequency
spectra reveals a feature which seems to be a common particle oscillation not caused by
external forces, but by correlations due to particle interaction.
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Figure 5.17: Ry, vs. time for an illustration of radial breathing. The grey graph is the total

radius of the original, raw data. The vertical colored lines mark the segments that are cut

out between.
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5.3 Stationarity of the Single Particle Time Series

The data was examined on global trends in chapter 5.2.1. These were removed from the
data in chapter 5.2.2. But only common motions of all particles were investigated. Now we
have obtained time series of displacements 7 and velocities v for each single particle. Since
these will be used for further investigation in spite of the averaged values, the stationarity
of the particular time series is of interest here. Sure any artefact of trends identified should
show up here, but the quantity of nonstationarities in these time series is of interest for
the interpretation of later results.

An examination of running quantities for each particle is possible but difficult to present
for more than 100 particles and three data sets. A qualitative picture of the situation can
be obtained as follows. For each particle ¢ running mean and running standard deviation
are calculated for 7;(¢) and v;(t) for two windows which cover the first and last half of
its whole trajectory length, respectively. The consecutive values with indices 1 and 2 are
now plotted against each other (figures 5.26 and 5.28). If they are equal for all particles in
certain limits, the resulting points (one point per particle) should accumulate at one spot
on the bisecting line. The more the values deviate from this line, the more they differ. A
high difference is caused by larger changes in the quantities. The spreading of points in the
plane should lie within the statistical and experimental errors. Also the values for different
particles should not deviate much, since similar averages of velocities and displacements
for the single particles are expected if no disturbing influences act on parts of the crystal.
Since this test is done with two windows only, it does not prove or disprove stationarity,
but it shows, if at least no long time drifts seems to exist.

To set the a limit for the significance of a deviation of the running mean and standard
deviation between both windows the error of these quantities has been estimated for each
single particle as

5?1,2 = \/57"2 + (Ur,l,Z/V Nw)2
60115 = \/672 + (011.2/ /2 (N — 1))? (5.40)

. The particle time series are called stationary, if

Y o= |Fo—Ti| — /0T + 677 <0
resp. X = |op1 — 0| — /007, + 002, <0 (5.41)

Figures 5.27 and 5.3 show X versus the radius of a particle to the center of rotation. The
numbers of particles with X > 0 and X < 0 respectively deviation from the bisecting
line larger and smaller than the error are plotted in the images. Except from the running
standard deviation of data set Ia more or at least half the particles deviate more than
required in 7 and in o, respectively. With the velocities the ideal case applies: both running
quantities differ far less than the error.
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Thus one can conclude, that the particle velocities should be stationary within the errors
while the displacements still have nonstationary components. This are very likely the
fluctuations which could be seen in the plots of the averaged running quantities (figure
5.20). It should be expected that the nonstationarity will affect the results of the tests
for ergodicity. The reasons could either be trends not identified yet due to the lack of
a theoretical model, or artefacts of trends in the case of an insufficient remove. But the
nonstationarity could also be a real property of the intrinsic dynamics of the system.

In the next chapter the time series of displacements and velocities of single particles will
be examined with respect to dynamical properties such as temperature and oscillations
under the influence of the interparticle potential.
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Figure 5.28: Velocity: running mean v;» vs. 7;; for each particle in a data set (left) and
running standard deviation o, vs. 0, ;1 (right).
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5.4 Dynamical Behaviour of Single Particles

5.4.1 Maxwell Distribution of Velocities

The velocity was assumed to follow a Maxwellian distribution. Here a short derivation of
this distribution is given. A particle in one dimension with coordinate z, velocity v, and
energy Eyo (2, vy) = Egin(vy) + Epot(x) can be described by a probability function F'(z, v,)
in phase space.

e_Etot(-'E:'Uz)/(kBT)

F(z,v,) =
e_Ekin (Uw)/kBT e_EPOt (w)/kBT
- 7 & Buon(we) /(5 T) [0 o= Epou(z)/(kpT (5-42)
o € kin (Ve B de ffoo e Epot(2)/(kBT)

with the thermal energy k7. Equation (5.42) is the probability function of the canonical
ensemble for a system in contact with a heat reservoir, normalised by the total phase space
volume [22]. To get the probability function for the velocity, Fas(vs), equation (5.42) is
integrated over all coordinates:

+o0 efEkin('Uac)/kBT

Fan(v,) = / Pz, v,)dz =

—00 f_—koc;o @*Ekin(vx)/(kBT)d’Uw

(5.43)

Elin depends on v, only, and the second term in equation (5.42) cancels out. Therefore the
probability distribution for the velocities is not dependent on the position z. The integral
in the denominator is a normalisation constant. For Ej;,(v) = 1/2 - Mpv2 (Mp: mass) it
has the value \/27kgT/Mp. The Maxwellian velocity distribution for one dimension is
thus:

1 S
——— e *BT/Mp 1D Maxwell distribution (5.44)
\/ 27T]€BT/MP

This is a Gaussian probability distribution with

FMl(U;U) =

mean v, =0

and standard deviation 0w, = kT /Mp (5.45)

If the system is 2-dimensional with coordinates z, vy and independent velocity components
vz, vy Which are both described as above, the probability of the velocity v = ( ), that

(%

Uy
means the probability to have a certain v, and a certain v,, is the product of the single
probabilities F'(v,) and F(vy):

1 ua%+vg

F(v) = Fari(vg) - Fari(vy) = o e 2% (5.46)
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The standard deviation depends on temperature and mass only and is the same for v,
and v,. It is written as o, = 0,, = 0y, nOW.

The probability of the absolute velocity v = ,/vZ + vi is larger than for v, because the
same value of v can be obtained by a lot of combinations of v,, v,. Therefore F(v) multi-
plied by the surface 27v in the 2-dimensional velocity phase space yields the probability
distribution of the absolute velocity:

2

Fus(v) =270 - F(v) = % ‘e 23 2D Maxwell distribution (5.47)

The Maxwell distribution depends on the mass Mp and the temperature 7" only. Some
useful relations for a 2-dimensional Maxwellian velocity distribution are:

Up = Uy =0 (5.48)
— —  1kgT
2 — .2 A4
v2 %= 50 (5.49)
[kgT
= — 5.50
Oy MP ( )
—_ o0 _ ™ k'BT
v o= A v - FMQ(’U)d’U = 5 (Fp) (551)
- o0 T
v? = / v? - Fapp(v)dv =2 - ksl (5.52)
0 Mp

The last relation is also following from the equipartition theorem [21].

5.4.2 Velocity Distributions in the Plasma Crystal

The velocity probability distributions Fys; and F)zo have been obtained for the velocities
in z and y direction and for the absolute velocity v;(t) for each particle i by making
histograms. 1- and 2-dimensional Maxwell distributions have been fitted to each histogram
with o, as fit parameter. The goodness of fit is given by the reduced x? calculated between
fit and histogram. As an example for one particle the histograms (normalized to unit area)
and the Maxwellian fits are shown in figure 5.29. The x?2 are not plotted explicitely, but
graphic 5.30 shows the maximum values obtained for velocity components v,, v, and for
v of each data set and the respective mean value of x? averaged over all particles. The
average values of the x? look reasonable good to accept the Maxwellian fits as a valid
model for the distributions of velocities, since they are of the magnitude of 1 and do not
reach 2 in the maximum.

By recapitulating the definition of the Maxwell distribution, it is described solely by
particle mass and temperature. Also, the temperatures should not differ for v,, v, and v.
The temperatures, or kinetic energies kg7, are now calculated for each particles velocity
time series directly from the data by using the relations for the mean squared velocities



5.4. DYNAMICAL BEHAVIOUR OF SINGLE PARTICLES 91

v2, v_§ and v2 (equations (5.49) and (5.52)) for the mean squared values, and again with
the relation for the standard deviations which were obtained as the fit parameters. The
result is shown in figures 5.31 to 5.33 for the three data sets. The temperature is plotted
versus the radial particle position R with respect to the rotation center to detect possible
dependencies from the position within the crystal. A linear fit to kg7 (R) has been made
for the velocity components and the absolute velocity and is plotted over the temperature
distribution.

Two things can be seen: The kinetic energies of the velocity components are located around
0.04 eV (= 464 K), which is much higher than room temperature (= 0.026 eV) and there
is indeed a radial dependence of the temperature. The gradients of the fit are shown in
figure 5.34. The temperature decreases with increasing radius while it is nearly constant
for the different peak-to-peak voltages.
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Figure 5.29: Histogram of velocities v, (upper left), v, (upper right) and v (below) of one

particle (diamonds) and Maxwellian fit (solid line). The dashed line is the distribution of
measurement errors.
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Figure 5.31: Data set Ia: Kinetic energy kgT versus radial position R for v,, v, and v.
The red, dotted lines correspond to the values obtained from the Maxwellian fit.
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The red, dotted lines correspond to the values obtained from the Maxwellian fit.



96 CHAPTER 5. ANALYSIS

0.055

- la, v
0.050 X fit

0.045

[eV]

0.040

kgl

0.035

S
S
N
«%
X
<

0.030

\\\‘\\\\‘\\\\‘\\\\‘\\\\Pﬁ\\\

0025z =" mf= == T T T T
2 4 6 8
R

O

0.055

<

% fit llla,
¢ data

0.050

0.045

[eV]

0.040

kgl

0.035

\\\‘\\%\‘\\\\‘\\\\‘\\\\“\\\4

0.030

0025 == === '7'7'7'7'7'7'7'7"7'7'7'T';T*'T'*'T'*\'*'T'*"*
2 4 6 8
R

O

0.055

llla, v
0.050

& dato

0.045

[eV]

0.040

kgl

0.035

0.030
0.0251

Figure 5.33: Data set IIla: Kinetic energy kgT versus radial position R for v, v, and v.
The red, dotted lines correspond to the values obtained from the Maxwellian fit.



5.4. DYNAMICAL BEHAVIOUR OF SINGLE PARTICLES

—0.0000 [T T
L O v,

— —0.0002f o A% 1

g O v il

3 -0.0004[ o o o

- [ o 2]

xm *0.000@T A A 7]

o L

E L 1

> —0.0008 | ]
000710 bttt ]

120 130 140 150 160
Upp [V]

Figure 5.34: Gradient of linear fit to kgT'(R) vs. Up,

97



98 CHAPTER 5. ANALYSIS

5.4.3 Distribution of the Displacement

The distribution of displacements r is determined mainly by the interparticle potential
®;p. An approximative theoretical derivation of the expected probability distribution
is given here, starting with the 1-dimensional distribution of the coordinates Z and 7,
considering = as example. £ and y are the coordinates relative to the mean lattice site
here, not the coordinates of a particle in the crystal. From this a model for the distribution
of r is estimated. The normalisation constants will be associated with physical variables
of the system.

As the Maxwell distribution of velocities is derived by the integration of the probability
function F(Z,vz) in equation (5.42) over dZ, the distribution Fp,(Z) of Z is obtained by
integrating (5.42) over dvz. If the potential energy is independent of the velocities, as in
our case, the terms with Ey;, cancel out. Thus

B +oo B e_Epot(j)/(kBT)
Fp (7) = / (el = o (5.53)

The integral in the denominator gives a normalisation constant. To solve it again the con-
sideration of a linear chain of particles is used and the interparticle potential is expanded
into a Taylor series to the second order. Then the change of the potential energy can be
written as in equation (4.28)

2
AEy(7) = Qp®ip(A) ((%}f) +é) g2

= QP‘I)IP(A)%

= %kisQ (5.54)

(2 + 2k + 2K7) - 7

Here k = A/Ap and the definition of the spring constant £ from equation (5.7) have
been used. AE), is the quantity which destines the distributions of positions , since the
particle prefers directions of motion where the gradient of energy decreases. Solving the
integral in the equation (5.53) with AE,, yields for the normalisation constant

1 1

1 1
fj;o eXp(_AEpot(-i')/(kBT))d.i' B 2f0+°° eXp(—%kj2/(kBT))d.f - \/% \/m (555)

and thus for Fp(Z):

FDl(fE) = L#eiék;;i/k (5.56)
vV 2T \/ kBT/k‘

The same holds for the distribution of 3. Fp; is a Gaussian distribution with mean zero

and standard deviation o3 = 05 = %

The displacement r is derived from % and 7 as the square root /%2 + 42. Therefore for
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independent % and 7 the probability function Fpo(r) of the absolute displacement r is
obtained by multiplying Fpy(z) with Fp; (%) and the volume 277 of the phase space of r
as it was done for the distribution of the absolute velocity.

1 7"2

e 2FRTTR (5.57)

Fpa(r) = Fpi(Z) - Fpi(9) - 277 = kB;/k

The measured distributions for Z;, 7; and r; for the particular particles ¢ are obtained
as histograms from the data. Fpi(%;(t)), Fp1(9:(t)) and Fpo(r;(t)) are then fitted to the
histograms with \/kgT/k as fit parameter. As an example, the histograms normalized to
unit area found for one particle are displayed in figure 5.35. The goodness of the fits is
tested again by the x2 and illustrated in terms of the maximum and the average x2, in
graphic 5.36.

While the maxima of x2 are located around 30 for r and all data sets, the average exceeds
1 by a factor of 2 respectively even 10 for data set IIla, so the validity of the fits are to
be doubted.

The reason is on the one hand the model choosen for the distribution, which considered
only small and linear deviations r from the mean lattice site in a chain of particles. The
fact was ignored a particle is under the influence of approximately six neighboring particles
in a hexagonal structure.

Further the detrending was not perfect for r, thus the shape of the distributions could
still be influenced by remains of global motions in the crystal. Especially data set I11a
seems to diverge.

To demonstrate this, the histograms of r for all particles are plotted on top of each
other as point distributions in panel 5.37. For a correct model and equal conditions for
the particles in the crystal one would assume that all points are located around one
distribution Fp, with a spreading due to statistical reasons or small irregularities. In the
image a broad variation of distributions is found. The spreading increases with peak-to-
peak voltage (from top to bottom in figure 5.37). To get an idea of the origin of the
differences, the particles are divided in two or three groups as indicated by the colors
red, blue and green on the left side of panel 5.37. Particles with a maximum > 0.04 are
assigned to the 'red’ particles, if the maximum is < 0.04 they are given the color blue. A
theoretical average distribution for the colors red and blue is overplotted as a black line
to illustrate the difference. For data set IIla a third color (green) was needed for particles
whose distributions have two maxima. These are very likely the reason for the bad x?2
statistic for the fits to this data set. The corresponding particle distributions seem to
consist of two nested distributions.

For comparison the corresponding fits found for each particle are displayed on the right
hand side as an overlay of all fits of one data set. The change of colors from light blue
to red illustrates the increasing maximum of the distribution for different particles. Here
one finds a continuous change of the shape of the distributions fitted to the histograms.
Though the goodness of fit is in question, it reflects the differences between the particular
particles.
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Figure 5.35: Example of the histograms of a) Z, b) 4 and c) r for one particle (diamonds),
and a fit with Fp;, Fpy respectively (solid line). The curves are normalized to unit area.

As a final step particles belonging to different groups are identified by the unique numbers
they are given during the tracking with respect to their positions in the crystal. In figure
5.38 the positions of all particles in the first frame of a record are marked with the colors
as they were introduced for the histograms above. The rotation center is marked by a
cross. In each data set the ‘red’ particles are approximately located around the rotation
center, while the 'blue’ particles group towards the edges. In data set IIla the ’green’
particles are arranged in a continuous stripe, so a spatial correlation of their irregular
behaviour exists. Since the images contain only parts of a larger crystal, it is difficult to
say, if the localisation of the groups is symmetrical around the rotation center or if it is
connected to the localisation of the crystal in the confinement potential. Surely it will
influence the statistical tests where ensembles of particles are compared with trajectories
of single particles in time and turns up the question if such a test is reasonable as long as
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the cause for the difference in the particle behaviour is not known.
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Figure 5.38: Position of all particles in one frame. The cross marks the center of rota-
tion. The colors assign particles to the groups of distributions as it was introduced in

figure 5.37.
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Though the investigation of the displacement distributions revealed different behaviour
of groups of particles connected spatially within the crystal thus contradicting the as-
sumption of the result of equality from the comparison of time and ensemble distributions
from the outset, it can be used to estimate a property of the system, namely the Einstein
frequency. Remember the spring constant k& appearing in the theoretical distribution for
r. In chapter 5.1.2.2 it had been connected to k& by
k

wg = Mn (5.58)
with the particle mass Mp = 5.5- 107! kg. Since the kinetic energy kT was estimated
from the velocity distributions in the last chapter, k£ and thus wg can be derived from the
fit parameter /kpT/k for each particle. The resulting frequency vy = wg /27 is displayed
in figure 5.40. For comparison with the vg estimated in chapter 5.1.2.2 where the charge
was an unknown factor, this is plotted again versus ascending particle charges in figure
5.39. The range of charges corresponding to the frequencies estimated from the fit to the
displacement distributions is marked by a rectangle.
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Figure 5.39: v as derived in chapter 5.1.2.2 vs. particle charge. Within the rectangle
possible charges are located for the frequencies found from the distributions.

The vg show a radial dependence very likely arising from the use of the particle tem-
peratures in the calculation, which also were dependent on R. The estimated frequencies
should not be weighed too much, since the goodness of fit was not the ideal case for all
particles. Especially for data set IIIa the result might be wrong. By excluding the lowest
frequencies originating from that data set, possible particle charges would be in the range
of 5000 to 10000 q.. @p = 5000 g, together with kgT = 0.04 eV and A ~ 0.7 mm would
yield a coupling parameter I' & 19000 which coincides with the estimation of I' in chapter
5.1.2.1.
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Figure 5.40: vg estimated from the fit parameter in Fpo(r;) with the particle velocities
from chapter 5.4.2 plotted against radial position R for data sets Ia,Ila and Illa (from
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5.5 Test for Ergodic Behaviour

Ergodic behaviour in a plasma crystal is understood as the equivalence of the dynamic
behaviour of a single particle in time and the ensemble of particles as components of
the crystal at one particular time. It is often presupposed in the interpretation of particle
dynamics. A lot of quantities such as particle temperature, the motion under the influence
of the interparticle potential or the charge are derived from series of images taken from a
whole crystal by averaging over the ensemble of particles in each image and over time.

It was already pointed out that a plasma crystal is a strongly coupled system. The con-
dition for ergodicity of independent systems in an ensemble thus contradicts with the
nature of plasma crystals.

Also the stationarity of the time series of displacements and velocities is a crucial point
for ergodic behaviour. In the experiments performed in this thesis, long-time optical ob-
servation of a plasma crystal have been recorded. Thus nonstationarities hidden during
the usually much shorter measurement times reveal apart from the already known trends
innate to the crystal as a whole. This nonstationarities seem to be a property of each
particular particle and not a global effect.

Further it had been found in the last chapter that the displacements of particles from
their mean lattice site, defined as the average position in time, exhibits distributions
completely determined in their shape by the position of the specific particles within the
crystal. This dependence could be influenced by the external confining potential, since it
was approximately radial symmetric to the rotation center of the crystal, which usually
lies at the minimum of the confinement.

The distribution of velocities was found to be Maxwellian, thus determined by particle
temperature and mass. The temperature was higher than the neutral gas temperature,
and showed a radial dependence as the displacements, though the dependence was smaller
by magnitudes here.

The question emerges for the validity of assuming ergodic behaviour in a system which
disagrees with conditions implied for ergodicity. This could also be expressed as the ques-
tion, how an ensemble of particles, of which each can be uniquely identified in phase space
by its particular distribution function such as to the displacement, could exhibit anything
else than a unique dynamic behaviour linked to that and strictly that particular particle.

However, it will be tested, if the distributions of the displacement r;(tx) = 7, from the
mean lattice site xarr, j, ynmr,; of all particles j € [1, Ni| in one frame at the time #; is
the same as the distribution of r;(¢,),n € [1, Ny] of one particle ¢ during all frames Nr.
This will be done by statistical test methods These will directly compare the differences
in the distribution of values of both sets. So no averaging will be done.The same will be
investigated for the absolute velocities v(t).

After a refresh of the conditions for ergodic behaviour in section 5.5.1, a short introduction
to the principle of statistical tests is given in section 5.5.2. The test statistic used is then
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explained in section 5.5.3, while section 5.5.4 summarises the result.

5.5.1 Conditions for Ergodicity

The information obtained for the performed experiments are compared with the conditions
of ergodic behaviour listed in chapter 3. The points to take care of are the time scales
of dynamics, the question for a closed system and stationarity, and last the condition of
independent realisations.

That a plasma crystal is not a closed system is known, but it was mentioned that a constant
particle energy would be enough to treat the particles as closed systems. In chapter 5.4.2
the particle velocities were described by Maxwellian distribution functions with a constant
temperature, so the kinetic energy is assumed to be constant. The potential energy is
connected to the particle charge and the confinement strength, which is given by the
external power source. All parameters were kept constant during experiments, and the
segments of trajectories affected by power fluctuations were cut out. The particle charge
depends mainly on the particle radius, which does not change. In summary, the energy is
assumed to be constant.

It was already pointed out, that the particles are not independent due to the strong
electrostatic interaction between particles. The high values of the coupling parameter
(table 5.2) confirm this. The degree and kind of correlation of the particles will not be
investigated here. The test on ergodicity should show, if the particles behave ergodic
though there are correlations. If the differences between time and ensemble distributions
are not negligible, this has to be considered if statistical or thermodynamical properties
of a plasma crystal are examined. Then for example the temperature of a plasma crystal
obtained by the ensemble average of the velocities in one frame can not be assigned to a
single particle.

The stationarity of the single particle time series was investigated in chapter 5.3. While
the velocity time series of each single particle could be called stationary within the sta-
tistical uncertainties, the displacements still exhibited nonstationarity. The reasons could
be trends not identified due to the lack of a theoretical model, or real properties of the
dynamics of the system.

5.5.2 Hypothesis Testing

Before passing over to the test on ergodic behaviour, some principles of statistical tests
with regards to the comparison of two sets of values are explained. As reference for this
and the following chapters mainly [30],[31] and [28] are used. In this chapter the expression
‘data set’ is used not in the sense of the whole outcome of a measurement but in the sense
of a set of values as input for a statistical test.

A statistical test gives a probability that an assumption about a set of values is valid
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within certain errors. Before applying the test, the assumption is expressed as a so called
null hypothesis Hy. If two data sets are compared with respect to equality, Hy is the as-
sumption, that both data sets originate from the same underlying distribution of values,
ie. they describe identical processes. The opposite case is then called alternate hypothesis
H, (both data sets differ). The aim of the test is to reject either Hy or H 4, not to proof
one of them.

As a next step, a confidence limit « is choosen. « is a value between 0 and 1. It expresses
the probability of error if the test result leads to a rejection of Hy. Some tests allow the
choice of a second parameter, 5. This is the probability of error if the alternate hypothesis
is rejected. Such kinds of test are called two-sided tests in opposite to the one-sided test,
which have « as the only parameter. The accuracy of a conclusion from the test depends
on the values choosen for a and 3, respectively, since both determine finite intervals of
the probability to draw a wrong conclusion from the test result or in other words, to make
a mistake. Table 5.4 gives an overview of the occurrences of this errors, called o and
errors corresponding to the parameters choosen (taken from [30]). One can see there, that
in case of undefined [ such as for one-sided tests, it is not possible to accept the null
hypothesis, since the error for accepting it is not defined. Then an acceptance of H, can
not be evaluated and thus is not a valid statement.

After the confidence limit has been choosen, the test is applied to the data sets. It usually
calculates a defined quantity, called statistic, from the data which expresses a difference
between both data sets. Now it has to be quantified, how significant the found difference
is in fact. Here either a limiting value dependent on the choosen confidence limit and the
number of data points of the compared data sets can be looked up in tables. If the found
difference is larger than this limiting value, it is called significant. Another approach is
to directly calculate a probability for the found difference which is usually defined such
that is decreases if the difference becomes larger. Thus it is the probability to obtain a
larger difference than the found one. If the latter is already significantly large, is is not
very likely to find a larger one.

conclusion from

statistical test reality reality

‘ H Hj true H, wrong ‘
Hyj rejected alpha error  correct
Hy accepted correct beta error

Table 5.4: Appearances of alpha and beta errors. In the left column the conclusions drawn
from the test result are listed. Both column to the right give the connection to the real
situation (which is not known, else one would not apply the test) and the error which is
done in the case of a wrong decision.

In the following, the test methods used here, namely the Kolmogorov-Smirnov test and
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the Kuiper test, are described in more detail.

5.5.3 Kolmogorov-Smirnov and Kuiper Tests

The Kolmogorov-Smirnov test is a one-sided test which is applied to unbinned data sets, in
other words no moments of distributions are compared such as mean or standard deviation
as it is done elsewhere. Therefore it has the advantage that it is more or less independent
of the kind of distribution of the values of the data sets, ie. it is not nessecary that the
values are for example normally distributed, as it is required by the Student-test for equal
means.

The null hypothesis of this test states the equality of two data sets. Since the test is one-
sided, only a can be choosen. As it was discussed above, in this case the null hypothesis
can only be rejected, but not accepted. We will choose an o = 0.05 as it is commonly
done. This means that a rejection of Hy due to the test result will have an error of 5 %
in this statement.

The data sets handed over to the test algorithm are two series of values taken from the
data of displacements and velocities respectively. One is the time series of one single par-
ticle corresponding to the distribution of values in time. The other data set contains the
corresponding quantity r or v of all particles in one frame, which was defined as the ensem-
ble. Between these two the test statistic is computed. Then, consecutively, each particle
trajectory in time is compared with each frame. As a restriction on the trajectories, only
those particles have been choosen which have a trajectory length of the full measurement
time. As an estimate of magnitudes: In average 100 single particles were compared with
9000 frames for one experiment. This yields ~ 9 - 10° comparisons per experiment.

A second test is done with the Kuiper test, which is mainly based on the Kolmogorov-
Smirnov test, but puts more weight on points farer away from the mean of the compared
sets of values.

It follows a description of the algorithm and the output one obtains.

Kolmogorov-Smirnov-Statistic The test method has been implemented as is is de-
scribed in [28]. It gets as input two data arrays as described above with lengths N; and
Ns. For the examples here the displacements r are used. The arrays are sorted by their
values in ascending order. Then the cumulative distribution functions Sy, (r) and Sy, (r)
of the values are derived. A cumulative distribution function Sy, (r),j € 1,2 gives for a
certain 7 the number of points with lower values than r, divided by the total number of
points N;. The cumulative distribution functions for the displacement of one particle and
one frame are displayed in figure 5.41 a).

The statistic derived with this test is called Kolmogorov-D. It is computed from the
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Figure 5.41: a) Cumulative distribution function for the displacements r(¢) of one par-
ticle (red line) and two frames (blue and green lines). b) Probability Pxs(D) vs. D
(Kolmogorov-Smirnov-Statistic, blue), and Pxp(V) vs. V' (Kuiper-Statistic, red).

cumulative distribution functions Sy, and Sy, as

D= max |[Sy,(r)— SN, (r)] Kolmogorov-Smirnov D (5.59)

—oo<Lr<+00

D is a measure for the maximum absolute difference between Sy, and Sy,. The significance
of D, respectively the probability to get a certain value of D or a larger value by chance
under the assumption that the Sy, are drawn from the same distribution, is derived by

\/ﬁl] D) (5.60)

Pgs(D) = Qxks ({

with the function Qxs()) defined as

Qrs(N) =2 (=1)F e
k=1
Qrs(0)=1 QRxs(00) =0 (5.61)
and the effective number of data points

N1 N,
N,=—122_ 5.62
N 1N, (5.62)

The calculation of the probability Pggs is valid for N, > 4. In average, for the data used
here, N, ~ 100. The Kolmogorov-Smirnov-Test is more accurate around the median of
the data. Due to the kind of statistic it calculates, it is useful to find shifts between the
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compared data sets. A variation of the test, the Kuiper test, is more sensitive to differences
in the tails of the cumulative distribution functions and thus can identify spreads between
the data sets or different shapes of the distribution of values (see [28], chapter 14 for
details).

Kuiper-Statistic The Kuiper statistic V' is defined as

V= D+ +D_ = max [SNI — SNz] +  max [SNZ — SNI] (563)

—oo<Lr<+00 —oo<Lr<+00

The probability equivalent to Pxg is given by

Pip(V) = Qup([v/Ne +0.155 + ?/‘]2%] V) (5.64)
with the function Qxp(A) given by
Qrr()) =2 i(%?)\? — 1) N
QRxrp(0) =1 kﬂ, QRxp(c0) =0 (5.65)

N, is the same as defined in equation (5.60). V measures the differences above and below
both cumulative distribution functions, and thus is more sensible to deviations in the
tails.

Interpretation of Pxg and Pgxp Pgs and Pgp both return, for a found D or V, a
probability value € [0,1]. The closer this is to zero, the more significant is the difference
between the compared data sets. It is not the probability to get this particular D or V,
but the probability to find a D or V which is larger than D resp. V. If D or V are already
sufficiently small, it is very unlikely to find an even smaller value. Therefore Pxg and Pxp
can directly be compared with the significance level determined by «, which was choosen
as 0.05. Any Pkg/xp smaller than o = 0.05 leads to a rejection of the null hypothesis with
an error of 5 %. That means, if 100 independent tests are performed on data sets which
are in fact taken from the same underlying distribution of values (e.g. choose 10 values
randomly from a set of 1000 normally distributed data and compare them with 100 also
randomly choosen points from the same distribution), then 5 of the test results will yield
a Pxs/kp leading to a rejection of the null hypothesis, though this is the wrong decision.

Interpretation of Multiple Test Results Both test were applied to the measure-
ments Ia, IIa and IIla. The displacements r» and the absolute velocities v were compared,
as it was explained above, between the single particle time series and the values of r and
v respectively of all particles in one frame. The results for the displacement are presented
in section 5.5.3.1, the velocities follow in section 5.5.3.2.
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‘ Experiment Ia ‘ IIa ‘ IIIa ‘
Np 109 121 134
Ny 8298 8798 8048
Niot 904591 | 1064679 | 1078566
Ny 151 158 169
No.os.xs |%] 75.9 87.0 94.1
Noos xp |%] | 74.0 87.0 94.8

Table 5.5: Displacements: Numbers of compared data sets Np (single particles) and N;
(ensembles), total number of comparisons Ny, average number of particles in the ensemble
Ny and the percentage of test results Pxg/xp smaller than 0.05, Nyos xs and No.os xp-

It was explained in the beginning of this chapter, that a proof is not possible by the
application of statistical tests, and in particular the statistics computed here allow only
a rejection, not an acceptance, of the null hypothesis. Further for each measured data set
Ia, ITa, and I11a we computed Y 1-10° comparisons between particle trajectories in time
and ensembles of particles. Each result of a comparison has to be seen as independent of
each other. That means, for each single test result one can reject the null hypothesis of
equality due to a probability Pxg/xp < 0.05 with an error of 5 %, as explained above, for
the two particular data sets which were compared. The interpretation of all comparisons
together is a more difficult task. A measure for the significance of the rejection of the null
hypothesis of e.g. 70 % of all comparisons is required in this case. Since no statistic is
known which could answer that question, a qualitative interpretation will be done.

5.5.3.1 Results of Statistical Tests for Particle Displacements

To get an estimate of the number of single test runs and the number of data points in
each of the two data sets handed over to the algorithm in each run, these values are listed
in table 5.5, where Np is the number of particle trajectories (distributions in time), Ny is
the number of ensembles (or frames), Ny is the total number of test runs, i.e. the total
number of comparisons of single particles with ensembles. Ny is the average number of
particles contributing to an ensemble. The number of data points contained in a single
particle trajectory is equal to Ny. The last two lines contain the percentage Ny 5 ks and
No.os,xkp of Ny of outcomes of the test for which a Pxg or Pxkp < a = 0.05 has been
found.

A graphical evaluation is done in figure 5.42. The x-axis is divided in equally spaced bins
of the width 0.1 and is labelled P; which indicates discrete points of a probability. Then
the fraction of occurrences of Pxg < P, are plotted versus P, (left side) and the fraction
of Pgp < P, (right side) respectively. Since in chapter 5.4.3 some groups of particles were
identified according to the shape of the displacement distribution function, these were
picked out of the Np trajectories and the corresponding test results of comparisons of just
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these particles with all ensembles are plotted additionally in the colors they were assigned
to before. Red corresponds mainly to particles around the rotation center of the crystal,
while blue and green are located in the outer ranges. Note that particles of another color
stayed in the ensembles here. If a 'red’ particle was choosen as the trajectory in time, the
ensemble was constituted of 'red’ or ’green’ particles, too.

In summary the fraction of Ny, of test results of the Kolmogorov-Smirnov test which are
smaller than 0.05 increase from 75.9 % for measurement Ia to 94.1 % for IIIa with the
peak-to-peak voltage at the lower electrode. This numbers could be reduced by 5 % due to
the error done in rejection a possibly correct null hypothesis, but still they are too large to
conclude an equality of the behaviour of a particle in time and the ensemble. The Kuiper
statistic yield nearly the same result, so the difference between particle and ensemble is an
overall feature and not just a shift of the mean. Also the selection of groups of particles,
marked in red, blue and green in figure 5.42, does not produce a relevant difference in the
statement, though it should be noted that the red line is always located below the others.
The red particles were the ones in the center of the crystal.

The conclusion of a significant difference in the dynamical behaviour of particles and
ensemble with regard to the displacement is confirmed by the large deviations of the
shape of the probability distributions of the single particles found in chapter 5.4.3. These
exhibited a shift of the mean as a change of the standard deviation (see figure 5.37) which
are likely the reason of the result of the statistics.
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Figure 5.42: Displacements: Kolmogorov-Smirnov test results (left) and Kuiper test results
(right). Plotted is the percentage of particles with Pgg(D) smaller than the value on the
x-axis. The colored lines include only trajectories which belong to the corresponding group
found in chapter 5.4.3, compared with all frames. The black line includes all trajectories.
The dashed line indicates the limit oo = 0.05.
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‘Experiment ‘ Ia ‘ IIa ‘ IIIa ‘
Np 109 121 134
Ny 8297 8797 8047
Niot 904482 | 1064558 | 1078432
Ny 151 158 169
No.os.xs |%] 18.3 18.3 19.9
Noos xp [%] | 13.3 12.1 12.8

Table 5.6: Velocities: Numbers of compared data sets Np (single particles) and Ny (en-
sembles), total number of comparisons Ny, average number of particles in the ensemble
Ny, ; and the percentage of test results Pxg/xp smaller than 0.05, Nyos5 ks and Nogs xp-

5.5.3.2 Results of Statistical Tests for Velocities

Exactly the same procedure as for the displacements before is done for the absolute veloc-
ities. Table 5.6 lists the corresponding magnitudes for the statistical test. The illustration
in figure 5.43 follows the same principle as before.

In opposite to the displacements, no common increase of the fraction of probabilities
smaller 0.05 can be found for the velocities in both test statistics. The fraction stays
at ~ 18 % for the Kolmogorov-Smirnov test and at ~ 12 % for the Kuiper statistic.
Here a not neglectable difference between both statistics exists. It seems that if there are
significant differences in the particle trajectories and the ensembles, they appear more in
a shift of the mean as in a change of the shape of the corresponding distribution of values.

The curves in figure 5.43 show a continuous increase toward 1. This makes it difficult to
find a valid interpretation, since the Pxg/xp seem to be uniformly spread in the interval
[0,1]. In other words, any probability Pxg/xp is equally likely to obtain if a test is made
for two arbitrary choosen sets of velocities.

If the result would be more unique, one would tend to accept the null hypothesis of
equality of time and ensemble distributions of the velocity, even if it would mean to accept
an unknown error. But in the case of uniformly distributed probabilities this would be
risky. We remain with an open question here, but will not reject the null hypothesis for
the velocities. This does not mean that it is the correct assumption, but more specific
statistical methods would be needed to investigate the equality.
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Figure 5.43: Velocities: Kolmogorov-Smirnov test results (left) and Kuiper test results
(right). Plotted is the percentage of particles with Pgg(D) smaller than the value on the
x-axis. The colored lines include only trajectories which belong to the corresponding group
found in chapter 5.4.3, compared with all frames. The black line includes all trajectories.

The dashed line indicates the limit o = 0.05.
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‘Experimen’c‘ Ia ‘ IIa ‘ IIIa ‘
Np

red 43 61 23
blue 66 60 7
green - - 34
| Ny | 8298 | 8798 | 8798 |
Ntot

red 356857 | 536739 | 202377
blue 947734 | 527940 | 677523
green - - 299166
Noy s

red 63 79 36
blue 89 78 96
green - - 36
No.os,Kks

red 49.2 71.2 68.7
blue 72.2 89.3 91.5
green - - 99.3
No.os, kP

red 49.8 69.1 66.5
blue 70.4 91.0 92.9
green - - 99.1

Table 5.7: Numbers of compared data sets Np (single particles) and N; (ensembles), total
number of comparisons V;;, average number of particles in the ensemble Ny and the
percentage of test results Pgg/ xp smaller than 0.05, No.gs xs and No.gs xp. Particles and
ensemble are divided into groups regarding to the shape of their displacement distribution
function. They are labeled red, blue and green

5.5.3.3 Spatial Dependence of the Test Results

The question arose if the test results might be dependent spatial positions of particles in
the crystal.

As it was indicated in the former chapters, the particles could be separated into groups
with approximately different dynamical behaviour with respect to the particle’s displace-
ment distributions. Since the test results in section 5.5.3.1 leaded to a rejection of the
null hypothesis in most cases, the tests were applied again, but now the also the ensemble
of particles were separated. That means, ’blue’ particle trajectories were compared with
ensembles of 'blue’ particles, and so on. This has only been done for the displacments.
The results are presented in table 5.7 and figure 5.44 in the same manner as before.
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It can bee seen, that the dependence of the fractions smaller 0.05 on the peak-to-peak
voltage stay, as does the equalitiy of Kolmogorov-Smirnov and Kuiper statistic. But the
curves of different groups splitted much farer than before, and this is not dependent on
the smaller number of particles in the ensembles. But still ~ 50 % is the lower limit to
the fraction of comparisons with an Pxg/xp < 0.05

Interesting is the fact, that particles located near the center of rotation (red) yield the
best results with regard to not reject the null hypothesis.

5.5.4 Conclusion of the Test

The particles displacements from their mean lattice site, compared as trajectories in time
of single particles with ensembles of all particles at a particular time, seem not to exhibit
ergodic behaviour in more than 75 % of all cases. This number still increases with peak-to-
peak voltage. The assumption of ergodic behaviour should be rejected, or at least thought
about carefully.

The velocities could behave ergodic, but this is a statement which can not be given
based on the tests performed here. The small number of rejections of the null hypothesis
compared with the displacements confirm the probability to find ergodicity, if more specific
tests would be applied.

Figure 5.45 summarizes the results obtained from the statistical tests. The percentages of
probabilities Pk (left panel) and Pxp (right panel) smaller than 0.05 for both displace-
ments and velocities are plotted versus the peak-to-peak voltage Up,.

Onme possible reason for the increase of rejections with increasing U, and with inrceasing
radial distance of the particles to the center of rotation could be a spatial dependence
of the coupling parameter I' inside the crystal. Thus the particle dynamics, which are
determined by the degree of coupling, could change within the crystal as it was observed
in section 5.4.3, where the displacement distributions were investigated. In such a case it
would not be applicable to assume ergodic behaviour and perform ensemble averages for
the particle displacements.
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Figure 5.44: Result of Kolmogorov-Smirnov and Kuiper test for the displacements while
particle trajectories and particles contributing to the ensemble were choosen for the data
sets handed to the test accordingly to the colored groups.
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Chapter 6

Summary and Conclusion

Summary The aim of this thesis was to examine the dynamical behaviour of particles
in a plasma crystal with respect to the validity of the assumption of ergodic behaviour
related to fundamental properties of the particles described by their coordinates and
velocities.

A single-layer plasma crystal was generated as a 2-dimensional ensemble of particles and
long-time measurements of the particle coordinates have been recorded. The experimen-
tal task was to control external experimental parameters such that a stable system was
established. Parameters were choosen such that a crystalline, strongly coupled state was
achieved.

Global trends were identified by a sliding windows technique and Fourier transform meth-
ods. The trends were removed from the data by decomposition of the time series of particle
coordinates into the different aspects of motions and by selecting the relevant segments
for further investigation.

Time series of the displacements from the mean lattice site and the velocities were obtained
for each single particle. These were tested for stationarity in terms of running averages
and running standard deviations.

The distribution functions of velocities and displacements of each single particle describing
its intrinsic dynamics have been investigated in dependence on the particular particle
position within the crystal and with respect to the physical quantities determining the
shape of the distributions such as temperature and interparticle potential.

Statistical tests were applied to the detrended data, which compared the set of values of
the displacement and the velocity, respectively, of single particle trajectories with the set
of corresponding values at a fixed time, i.e. in one particular image of the data set. The
test method returned a quantity which could be interpreted in terms of the significance
of the difference found between the compared sets.

To improve the statistics, the comparison was carried out between each particle and each
frame independently. Thus a large number of approximately 1 million test results per data
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set could be evaluated.

Conclusion The question for ergodic behaviour of the particles in a plasma crystal
could not be answered definitely. On reason is that tests were carried out only on absolute
values of quantities. The surfaces covered by the system in its real phase space were not
investigated. In consequence, any statement concerning ergodic behaviour is applicable
just to the absolute values of a quantity in a 1-dimensional space, and no conclusions can
be drawn on the dynamics for higher dimensional distributions. With regard to the result
of the statistical tests applied, the assumption of ergodicity in the displacements has to
be rejected. Though this did not account for the velocities, ergodicity can not be proved
uniquely by the test methods used. The reasons for this restricted result cover a large
scale.

Starting with the data acquisition, the constance of experimental parameters such as
pressure and peak-to-peak voltage might be adequate for short-time measurements or
investigations of macroscopic quantities, but the influences on the particle dynamics are
not negligible, as it became evident in the radial contractions of the whole crystal due to
small power fluctuations.

Global trends such as rotation affect all particles in a plasma crystal and contaminate
the time series of the single particles. Thus the process of removing trends is a crucial
point in the data analysis. It has not been elaborated before, since it is not essential in
the usual case of short-time measurements. Further in the latter case trends might be
hidden at all. In the case presented here the removing of trends was possible only if a
theoretical model applicable to all particles could be found. Since this was not always
possible, nonstationarities were detected in the single particle time series.

The investigation of the distribution functions of displacements and velocities of the single
particles in time revealed a Maxwellian velocity distribution weakly dependent on the
distance of a particle to the rotation center of the crystal. The displacement distributions
were found to diverge completely when compared with each other. The reason could be
either artefacts of trends not properly removed from the time series, or a real physical
effect maybe related to the confinement potential.

In any case, particles can not be considered as equal realisations of a system since they
exhibit different dynamical behaviour with regard to the phase space of displacements.
In consequence, the rejection of the assumption of ergodicity follows, at least for similar
experiments such as performed here, which is affirmed by the result of the statistical test.

On exception can be made for the particle velocities. A lot of evidences were found for
possible ergodic behaviour with respect to the averaged velocities and the particle tem-
perature, respectively. Although the statistical test did not reveal a unique result, this in
no final conclusion. Since temperatures were found to be approximately constant for the
particles contributing to an ensemble, an averaging could be valid here and a common
particle temperature could be defined.
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The results presented are not a final proof, since a lot of experimental conditions could be
improved to fulfil the requirements of a system in equilibrium in a better way. Diagnostic
data should be captured during a measurement to give the possibility of identifying and
finally suppressing externally caused disturbances. The trends in the system could be
investigated in more detail and a detrending procedure could be developed which takes
into account all the prominent influences. Quantities like the particle charge could be
considered in the description of particle dynamics. The influence of charge fluctuations
was ignored here, but it might be an important factor, too. Finally, not just the absolute
values of quantities like the displacement and the velocity could be examined, but the
structures in a higher dimensional phase space using for instance delayed coordinates.
This could reveal a lot of information not yet evident.
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