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HE Astrophysics: BasicHE Astrophysics: Basic Radiation MechanismsRadiation Mechanisms

Synchrotron

Characteristic X-rays
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Blackbody RadiationBlackbody Radiation
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Radiation from accelerated charged particleRadiation from accelerated charged particle

• The information about the charge acceleration is transmitted as a 
pulse of electromagnetic radiation

• The total radiation is approximated by the Larmor formula
-(dE/dt) = |p|2 / 6 ο ε0 c3 = q2 |r|2 / 6 ο ε0 c3

where p is the dipole moment qr of the charge q
• The radiation pattern is of dipolar form, i.e. the power radiated 

varies as sin2Θ. There is no radiation along the acceleration 
direction 

• The radiation is polarized with the electric field vector in the 
direction of the acceleration vector of the particle

r = ct

∆v t

....
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BremsstrahlungBremsstrahlung

b Q

Coulomb interaction of two charged particles 
“free-free” transitions

Bremsstrahlung emission
Free free emission

Non-relativistic and relativistic cases
Lorentz transform between particle and observer frames
Decomposition of acceleration into parallel/perpendicular to v
Fourier analysis yields radiated spectral distribution

– Flat up to limiting energy transfer, exponential cutoff
Gaunt factor describes target/environment-specific collision parameters
Thermal Bremsstrahlung from integration over Maxwellian velocities
Relativistic-particle Bremsstrahlung from QM treatment
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Thermal Thermal Bremsstrahlung in Cosmic SourcesBremsstrahlung in Cosmic Sources

For a Maxwellian distribution of electron velocities, the spectral emission per unit volume is

dPB(T)/dVdν = 6.8x10-38 T-1/2 e –E/kT Ne NZ Z2 gB(T,E) [erg cm-3 s-1 Hz-1]

Ne = electron density
NZ = ion density (charge z)
E = h ν = photon energy
gB(T,E) = Gaunt Factor (E/kT)-0.4 for E << kT

The total bremsstrahlung emission is:

dPB(T)/dV = 1.4 x 10-27 T1/2 Ne NZ Z2 gB(T) where gB(T) 1.2

For a plasma with cosmic abundances:

dPB(T)/dV = 1.4 x 10-27 T1/2 Ne
2 , 

since Σ Ne NZ Z2 1.4 Ne
2 for cosmic abundances

Bremsstrahlung occurs in optically thin thermal plasmas
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Typical Spectra of Compact Sources:Typical Spectra of Compact Sources:
Thermal & NonThermal & Non--Thermal BremsstrahlungThermal Bremsstrahlung
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KleinKlein--Nishina Nishina Cross Cross SectionSection
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Cosmic PhotonsCosmic Photons
• Sources

Thermal Emission (~109K Blackbody; Fireball)
Continuum Radiation from Accelerated Charged Particles

Bremsstrahlung (e- & nuclei)
Synchrotron Radiation (e- and magnetic field)
Inverse Compton Radiation (e- and low-energy photons)

Line Radiation from QM System Transitions
Characteristic X-rays (atomic shell)
Cyclotron Radiation (magnetic field)
Annihilation of Positrons (e.m. field)
Decay of Pions (nucleonic interactions)

• Attenuation Processes
Inelastic Scattering Processes

Compton Scattering
Photo-Ionization

Pair Production
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Cross Cross SectionsSections

• Assume a slab of thickness l homogeneously filled with scatteres of
some sort   (electrons, atoms, molecules etc.). 

• The number density of scatteres is n (in cm-3) 
• The cross section σ is the area (in cm2) that a scatterer presents to

the photon for an interaction
• The absorption coefficient λ is the cross section multiplied by the

number density: λ= σ n (in cm-1)
• The mean free path is 1/ λ (in cm)
• The optical depth τ is the absorption coefficient multiplied with the

thickness: τ= λ l
• Finally, the transmitted light through the slab is

I = I0 e-τ = I0 σ n l
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Thompson Thompson scatteringscattering

• Scattering of light from single electrons (Thomson scattering) has a 
total cross section 

σT = 8 π re
2 / 3 = 6.652 x 10-25 cm,

where  re is the classical radius of the electron:
re = e2 / m c2 = 2.818 x 10-13 cm

• Scattering from atoms involves the cooperative effect of all atomic 
electrons and the cross section becomes correspondingly larger

• Thomson scattering applies only for low-energy photons, for higher 
energies the Klein-Nishina scattering cross section has to be applied 
(see below).
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Compton ScatteringCompton Scattering
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Inverse Compton ScatteringInverse Compton Scattering

Energy Gain
Eγ=Γ2mc2 for high energies
Eγ=Γ2hν for lower energies

Total Power 
(= Energy Loss of e-)

low-energy: Thompson scattering

High energy (Γhν>>mc2):
Klein-Nishina, ~1/hν

Energy spectrum ~ hν N(hν)
Max Energy ~ 4 Γ2 Ephotons
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ComptonizationComptonization

General energy exchange between e- and photons
Need rarefied gas (so no additional photons are produced)
Hot plasma (so energy gain of photons is significant)

For n scatterings, the energy gain is

For an optically-thick plasma, <hν>~3kTe
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Synchrotron Synchrotron radiationradiation

Particle traversing magnetic field B

Gyration frequency: 

Ω = eB / χ mc = 1.8 x 107 χ-1 [rad/s]

Total Energy loss according to Larmor formula:

P = 2/3 re
2 c χ2 B2 β2 = 1.6 x 10-15 χ2 B2 β2 sin2α [erg/s]

For an isotropic distribution of particle velocities, integrated over all angles:

P = 4/9 re
2 c χ2 B2 β 2 = 1.1 x 10-15 χ2 B2 β2 [erg/s]
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Synchrotron Radiation SpectrumSynchrotron Radiation Spectrum

• Low-E limit:
Superposition of Lines at νg

• High-E:
Transformation into Observer’s 
Frame

F.T. of e- Acceleration
Doppler Shift, Retarded Time
Forward Beaming

j~ν1/3 (low-ν) … cej ν
ν

ν
−

~
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Spectra from Cosmic Sources with Radiating eSpectra from Cosmic Sources with Radiating e--

Synchrotron radiation power law

Self-absorption

Bremsstrahlung radiation (flat)

(Peculiar HE Emission)
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InteractionsInteractions of of XX--ray photonsray photons withwith mattermatter



Roland Diehl<HE-Astro_TUM_SS2003_1>

Characteristic Characteristic XX--raysrays
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Photoelectric Crosssections Photoelectric Crosssections of of various various 
elementselements

Outside Atomic Edges: σ~Z3 λ3
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Annihilation of PositronsAnnihilation of Positrons

• Antimatter e+

From Pair Production
mec2=511 keV

• Annihilation
2-Photon Annihilation with e-

Annihilation Paths
In flight
At rest / thermal
Via Positronium formation
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Pair ProductionPair Production

• Photon-Photon Collisions
Production of e+e- Pair

• Thresholds
Energy of Colliding Photons

hν > 511 keV (γγ)
hν > 1.022 MeV (with starlight/CMB)

Source Compactness
Compactness parameter l > 10
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Pair Pair ProductionProduction
• Pairs can be created as soon as h ν > 2 me c2

• Pairs cannot be created in vacuum because energy and 
momentum need to be conserved; a third particle (e.g. nucleus)
is required
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Nuclear DeNuclear De--ExcitationExcitation

• Cosmic-Ray Collisions with 
ISM Gas Excite Nuclei

• De-Excitation Leads to 
Characteristic Gamma-Ray 
Emission
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4444Ti  DecayTi  Decay
44Ti44Ti

e-capture ( 99.3 % )
(Q=0.26 MeV)

0-

1-

e-capture
( 0.7 % )

44Ca44Ca

2+

4+ (2.28)

6+ (3.29)

2+ (2.656)

e- - capture & β+  - decay  ( 98.95% )
(Q=3.654 MeV)

γ 0.0784 MeV  ( 98.3 % )*γ 0.0784 MeV  ( 98.3 % )*

τ =89y
0+ 6+ (0.27 MeV)

0- (0.146 MeV)

γ 0.0679 MeV  ( 100 % )*γ 0.0679 MeV  ( 100 % )*τ = 5.4 h
2+

44Sc44Sc

44Ti Decay:

Photon yields: (photons per decay)

0.0679 MeV 1.00
0.0789 MeV 0.98
0.5110 MeV          1.96 
1.1570 MeV 1.00
1.4995 MeV 0.01

44Ti ->{τ =89y}-> 44Sc:
[67.9keV(100%), 78.4keV(98%)]

44Sc ->{τ = 5.4hrs}->44Ca 
[1.157 MeV (100%); β+ (98%) 
E (β+ )max=1.467 MeV]

γ 1.157 MeV (1%)

γ 1.157 MeV (100%)γ 1.157 MeV (100%)

0+
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Pion Production and Pion Production and -- Decay GammaDecay Gamma--RaysRays

• Nuclear 
Interactions in 
CR/Gas Collisions 
Lead to πo

• πo -> γγ
• Source Function is 

Unclear 
(deconvolved from 
γ-ray emission)
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Cosmic Ray Interactions and Photon SourcesCosmic Ray Interactions and Photon Sources

• Diffuse High-Energy 
Radiation is Created 
from Variety of 
Processes

Charged-particle 
radiation in plasmas and 
magnetic fields
Inverse-Compton 
scattering on starlight 
and microwave 
background radiation
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Cerenkov RadiationCerenkov Radiation

nv
c

=θcos

•Particle Propagation through Medium at v=local 
light velocity
•Coherent superposition of sideward wave 
fronts at an angle
•Energy Loss of Particle due to Shock Wave 
Generation
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Interstellar Medium PhotoInterstellar Medium Photo CrossectionCrossection
((Cosmic AbundancesCosmic Abundances))
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Interaction of Interaction of HE photonsHE photons with with mattermatter

Cross section of lead
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Interaction of Interaction of HE photonsHE photons with with mattermatter
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AttenuationAttenuation in Matterin Matter
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HEHE--Photons from Cascade InteractionsPhotons from Cascade Interactions
• Two Aspects

Electromagnetic 
Cascade
Nucleonic Cascade

• In Cosmic Sources: 
CR Gamma-Rays

• In Instruments: 
Background
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ISM Absorption Cross ISM Absorption Cross Sections / XSections / X--ray Horizon ray Horizon 
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Transparency of the UniverseTransparency of the Universe

• Interaction of Photons
Absorption (Dust, Gas)

Structure from
– Dust Particles, Molecules
– Atomic-Shell Electrons

Scattering
Inelastic:

– Comptonization
– Inverse-Compton Boosting

Morrison & MacCammon ApJ 1983
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