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ABSTRACT

Galaxy proto-clusters are receiving increased interest since most of the processes shaping the structure of clusters of galaxies and their galaxy
population happen at the early stages of their formation. The Euclid Survey will provide a unique opportunity to discover a large number of
proto-clusters over a large fraction of the sky (14 500 deg?). In this paper, we explore the expected observational properties of proto-clusters in the
Euclid Wide Survey by means of theoretical models and simulations. We provide an overview of the predicted proto-cluster extent, galaxy density
profiles, mass-richness relations, abundance, and sky-filling as a function of redshift. Useful analytical approximations for the functions of these
properties are provided. The focus is on the redshift range z = 1.5—4. In particular we discuss the density contrast with which proto-clusters can be
observed against the background in the galaxy distribution if photometric galaxy redshifts are used as supplied by the ESA Euclid mission together
with the ground-based photometric surveys. We show that the obtainable detection significance is sufficient to find large numbers of interesting
proto-cluster candidates. For quantitative studies, additional spectroscopic follow-up is required to confirm the proto-clusters and establish their

richness.

Key words. galaxies: clusters: general — galaxies: high-redshift — large-scale structure of Universe

1. Introduction

Interest in galaxy proto-clusters has recently strongly increased
thanks to observational capabilities of new survey instruments,
which have revealed how some of the most essential processes
shaping the present-day galaxy population in clusters has already
happened in the very early stages of cluster formation. The desire
to obtain direct observational evidence of these processes at
high redshifts has motivated many recent observational studies
of proto-clusters (e.g. Overzier 2016; Alberts & Noble 2022).

Galaxy proto-clusters have been found in different ways.
They have been found as serendipitous detections in systematic
surveys: such as (1) in photometric surveys often conducted to
find distant galaxies. One of the first of these discoveries is the
proto-cluster in the SSA22 field, which was found as an overden-
sity of Ly-break galaxies at redshift z ~3 (Steidel et al. 1998).
Other such detections include overdensities of Lya-emitters
(Shimasaku et al. 2003 — Subaru Deep Field, Ouchi et al. 2005 —
COSMOS Survey, Higuchi et al. 2019 — SUBARU HSC Survey),
i-band drop outs (Toshikawa et al. 2012 — Subaru Deep Field),
and multi-band photometric redshifts (Chiangetal. 2014 —
COSMOS Survey). Galaxy proto-clusters have also been found
(2) in spectroscopic surveys, for example, in the VIMOS Ultra
Deep Survey (Cucciati et al. 2014, 2018; Lemaux et al. 2014;
Harikane et al. 2019), and (3) as concentrations of sub-millimeter
sources in the Planck Survey (Planck Collaboration XXVII 2015;
Flores-Cacho et al. 2016; Calvi et al. 2023), by the South Pole
Telescope (Vieira et al. 2010; Miller et al. 2018), by the Herschel
Space Observatory (Clementsetal. 2014; Greenslade et al.
2018), and in other deep survey fields (Daddietal. 2009;
Dannerbauer et al. 2014; Casey etal. 2015; Oteoetal. 2018;
Goémez-Guijarro et al. 2019; Wang et al. 2021). Also the detec-
tion of proto-clusters as overdensities of passive galaxies has
been reported recently (Strazzullo et al. 2015; McConachie et al.
2022; Itoetal. 2023), where the objects of Strazzullo et al.
(2015) are not easily classified as either clusters or proto-
clusters. However, interesting proto-cluster systems have been
discovered around particular objects marking dense regions
of the Universe, so-called signposts for proto-clusters, includ-
ing (4) radio galaxies, which have been used for quite some
time to search for dense environments (Le Fevre etal. 1996;
Pentericci et al. 2000; Kurk et al. 2000, 2004; Venemans et al.
2002, 2004, 2007; Miley & De Breuck 2008; Kuiper et al. 2011;
Hatchetal. 2011a,b; Galametzetal. 2012; Wylezalek et al.
2013; Koyamaetal. 2013; Castignanietal. 2014a,b), (5)
AGN (active galactic nuclei) playing a similar role as
radio galaxies (Djorgovskietal. 2003; Hennawietal. 2015;
Garcia-Vergaraet al. 2017, 2019, 2022), (6) and Ly-a blobs
(Calvi et al. 2023), and last but not least (7) by absorption in the
light of background objects (Francis etal. 1996; Steidel et al.
1998; Hennawi et al. 2015).
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While these observed systems span a range of properties (not
all of these objects may end up in one galaxy cluster), one
looks for a unifying description. The general idea is to call a
proto-cluster a structures that is expected to evolve into a galaxy
cluster by redshift z = 0 (e.g. Steidel et al. 1998; Overzier
2016), whereby theoretical modelling or simulations are used
to connect the observations to present-day cluster properties. In
Steidel et al. (1998), one of the earliest studies of a proto-cluster,
the structure evolution model of a spherical top-hat overdensity
was used to relate an observed overdensity to the expectation
for a galaxy cluster at the present day. Another approach is to
use N-body simulations to trace the evolution of z = 0 clusters
back to the redshifts of observations and provide, in this way,
relations between present-day cluster masses and the proper-
ties of their precursors at high redshift. Chiang et al. (2013) pro-
vide results from such a study and present correlations between
the proto-cluster overdensity and the expected cluster mass at
z = 0, which has been applied with some success to sev-
eral proto-cluster observations (e.g. Cucciati et al. 2014). Also,
Contini et al. (2016) studied proto-cluster sizes in simulations.
However, they used boxes instead of spheres, which makes a
comparison to other work more difficult.

The ESA-Euclid mission (Euclid Collaboration 2022,
2024a,b,c,d) with its deep near-infrared and high-angular-
resolution visual band survey, together with the auxiliary
ground-based optical survey data, will provide a unique oppor-
tunity to search for proto-clusters over a large region of the sky.
This will not only increase the number of known proto-clusters
and improve the statistics on their properties, but also yield rare
and massive systems, that can only be found in large survey
volumes. The main part of the Euclid Survey is the Wide Survey
of the sky outside the Galactic band, which has an area of about
14 500 deg? over six years. It will reach estimated limiting AB
magnitudes (5o for point-like sources) of about 26.2 in the
visual band, Ig', and 24.5 for the near-infrared bands Y, Jg, and
Hg (Euclid Collaboration 2022). This paper provides studies of
proto-cluster properties and their appearance in the Euclid Wide
Survey by means of simulations in order to explore the prospects
for the search of proto-clusters in the Euclid sky. Euclid will
enormously increase the number of known proto-clusters at high
redshifts and thus provide the base for precise statistical studies
on proto-cluster structure, early galaxy evolution in dense
environments, and the origin of present day cluster properties.
But it will also provide the large survey volume needed to find
the most interesting objects, the precursors of the most massive
galaxy clusters.

! The visual band of the Euclid VIS instrument covers a wavelength

range from 500 to 900 nm.
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One of the major interests in the study of proto-clusters is
gaining an understanding of the evolution of galaxies in these
dense regions compared to the regions outside of them. The
important questions are, when and through which processes was
the difference of the more passive present-day cluster members
compared to field galaxies established, which epoch saw the bulk
of the star formation activity in the cluster galaxies and the most
intense enrichment of the intracluster medium with heavy ele-
ments, and when and how were the central regions of clusters
and the giant central galaxies, such as cD galaxies, formed. An
interesting example of the latter question is the study of the Spi-
derweb proto-cluster (e.g. Tozzi et al. 2022). The Euclid survey
will provide a large statistical sample of proto-clusters, which
will not only allow for the investigation of single interesting
cases as has been done so far, but enable a study of these ques-
tions in the form of population statistics.

In this paper we define a proto-cluster as a matter and galaxy
concentration at a higher redshift that is bound to develop into a
galaxy cluster by redshift zero with a mass larger than 10'* M,
inside r,09. We focus mainly on the redshift range z = 1.5-4. At
higher redshifts, the galaxy density in the Euclid Survey is too
sparse to effectively characterise proto-clusters, while at lower
redshifts, galaxy clusters are already abundant. In the follow-
ing, we explore the observational features of such proto-clusters
using analytical models and cosmological simulations. We also
estimate their abundance as a function of redshift.

The paper is organised in the following way. In Section 2, we
describe the formalism of proto-cluster evolution with a top-hat
model, while in Section 3 we give information on the cosmologi-
cal simulations used to explore proto-cluster properties. The fol-
lowing sections are focused on different proto-cluster properties,
such as sizes (Sect. 4), galaxy density profiles (Sect. 5), projected
contrast in observations (Sects. 6 and 7), and the mass-richness
relation (Sect. 8). Section 9 discusses the expected proto-cluster
abundances and their sky-filling factors (how much of the sky is
covered by proto-clusters in projection). Discussions of the find-
ings are provided in Section 10 and in Section 11 we present
our summary and conclusions. Unless stated otherwise, we use
a cosmological model with kg9 = 0.7 = Hy/100km s Mpc_l,
Q. = 0.3, and a flat metric, which is referred to as ‘reference
model’.

2. Proto-cluster model

As a basic characterisation of proto-clusters, we explore their
overdensity evolution in this section. For galaxy clusters
and their formation, a simple, general concept that can be
expressed with analytic formulas has helped us very much
in guiding our thoughts, the so-called Press—Schechter model
(Press & Schechter 1974) and its extensions (e.g. Bond et al.
1991; Sheth & Tormen 1999). It is in its original form based
on the collapse model of a homogeneous overdense sphere and
the first-order statistics of density peaks in the large-scale matter
distribution. It provides the most essential information to char-
acterise the galaxy cluster population, such as the mass func-
tion, their characteristic sizes, and their number density evolu-
tion with time. Its precision for the prediction of number counts
is usually better than a factor of two for low redshifts and not
extremely high masses (510" My) (Bond et al. 1991). This is
not enough for precise cosmological modelling. But this con-

2 The radius ry is the radius inside which the mean matter overdensity
of the cluster is 200 times the critical density of the Universe at the
cluster redshift.

Table 1. Cosmological parameters used in the different models assum-
ing a flat metric.

Model Qn Moo £
Planck 0311 0.677 0.816
Millennium 0.25 0.730 0.90
Reference 0.30 0.700 -
REFLEX clusters 0.29 0.700®  0.77

Notes. We assume a flat metric. ¥ The Hubble parameter was pre-
set in this study. Its influence on the results is small and discussed
in Bohringer et al. (2014). The REFLEX cluster model is only used in
Sects. 9 and 10.

cept has also provided the frame in which more precise ana-
lytical models have been devised, which have been calibrated
with N-body simulations (e.g. Jenkins et al. 2001; Evrard et al.
2002; Tinker et al. 2010; Despali et al. 2016; Castro et al. 2021).
In recent work, we applied this concept also successfully to those
superclusters, which are expected to collapse in the future — call-
ing them “superstes-clusters” (Chon et al. 2015). These super-
clusters have the same relation to future galaxy clusters as high-
redshift proto-clusters to galaxy clusters of the present day.

Therefore, it is well justified to apply this concept analo-
gously to our proto-cluster project. The adopted model describes
the evolution of a homogeneous top-hat spherical overdensity in
a ACDM universe. The calculation of the evolution is based on
Birkhoft’s theorem, where a homogeneous sphere in a homoge-
neous background universe evolves as a universe would with the
local parameters as cosmological parameters. After finding the
proper initial conditions for a collapse at redshift zero, we follow
the evolution of the overdensity by integrating the Friedmann
equations, including a A term starting at high redshift to z = 0.
In the calculation, we determine the overdensity with respect to
the mean matter density and the evolution of the radius of the
overdense region with respect to g at z = 0.

We define a matter overdensity ratio as the ratio of the
mean proto-cluster density, p,.(z), to the background density,
Rov-pM(2) = Ppc(2)/pm(z), where pm(z) is the mean matter
density at the given redshift. We have calculated R,y-pm(2)
by means of the spherical collapse model for three differ-
ent sets of cosmological parameters: for the reference model
defined in the introduction, the cosmology resulting from the
Planck Survey (Planck Collaboration XIII 2016), and the cos-
mology used in the Millennium Simulations (Springel et al.
2005). Table 1 gives these three sets of cosmological param-
eters. We also list the cosmological parameters inferred from
the present-day cluster population in the REFLEX cluster sur-
vey (Bohringer et al. 2014). The cluster mass function used later
in this study (Bohringer et al. 2017) is based on these results.

The resulting evolution of R,,_pm(z) is shown in Fig. 1. The
curves for the reference model and the Planck cosmology can
hardly be distinguished in the figure, but the Millennium result
is slightly different. The difference is mostly due to the choice of
Q. and og, for which an older preference was used in the Mil-
lennium Simulations. The difference in the cosmological models
does not significantly change the observables discussed in the
following. We also indicate in the figure the turn-around redshift,
at which the overdensity stops expanding and starts to collapse.

As reference we provide a few numerical values of
Rov-pm(2): 3.24,2.52,1.91, 1.64 for z = 1.5, 2, 3, 4, respectively.
The overdensities are small for the time before the turn-around,
which occurs at z ~ 0.8 in the reference model. For an object
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Fig. 1. Evolution of the overdensity ratio, R,,_pm(z), with redshift for an
object that collapses at z = 0. The results for three cosmological mod-
els are shown: the reference model, Planck cosmology, and Millennium
cosmology. The first two models can hardly be distinguished in the plot.
The vertical line indicates the redshift of the turn-around point.

that collapses at z = 0, the overdensity ratio at turn-around is
about 6.6. After the turn-around, the overdensity ratio increases
rapidly.

3. Cosmological simulations

Three sets of simulations in the form of lightcones are used
for the following study. The MAMBO, GAEA H, and GAEA
F lightcones are derived from the Millennium Simulations
(Springel et al. 2005; Boylan-Kolchin et al. 2009). The size of
the lightcones and the cosmological parameters on which the
simulations were based are given in Table 2. Importantly, these
lightcones contain information about the merger trees, such that
for each galaxy, one can find out if it is included in a larger dark
matter halo, a group or cluster of galaxies, at redshift zero. The
mass of this final host halo is known, and this parameter is used
throught this paper. These three simulations were the only ones
available to us where this information necessary for our work
was included. For the two GAEA light cones different semi-
analytical models were used to determine the properties of the
galaxy population. Some of the following analysis required spe-
cial information only available for the MAMBO light cone at the
time of writing. In this case the results are shown only for this
simulation. One of the critical differences in the semi-analytic
modelling of the galaxy population that can effect the observ-
ables derived from the light cones is the stellar mass function
used, as shown by Fu et al. (2024).

The MAMBO simulation based on empirical relations,
developed by M. Bolzonella, L. Pozzetti, and G. Girelli, uses
the halo and sub-halo positions as well as dark matter masses
of one of the 24 lightcones built by Henriques et al. (2015).
Under the assumption that each subhalo is hosting one galaxy,
the stellar mass was derived from the stellar-to-halo mass rela-
tion (Girelli et al. 2020), and the physical and observed prop-
erties (e.g. star formation rate, dust attenuation, gas metal-
licity, morphology, emission lines, broadband rest-frame and
observed fluxes) from empirical relations implemented in a
modified version of the Empirical Galaxy Generator code
(EGG; Schreiber et al. 2017). The predicted galaxy proper-
ties also include magnitudes in the Hg and Ig bands. In
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Table 2. Parameters for the lightcones and the underlying cosmological
simulations.

Data set Radius Skyarea  hjoo Qn oy
(deg)  (deg?)

MAMBO 1.0 3.14 0.673 0311 0.816

GAEAH 2.635 21.813 0.73 0.25 0.9

GAEAF 2635 21.813 0.73 0.25 0.9

Henriques et al. (2015), the Millennium Simulations have been
re-scaled to a cosmology consistent with the Planck results
(Planck Collaboration XIII 2016; see Table 1).

For the GAEA lightcones, we take advantage of light-
cones built from predictions based on the Galaxy Evolution and
Assembly (GAEA) theoretical model. This is coupled with dark
matter merger trees extracted from the Millennium Simulation
(Springel et al. 2005), which makes it possible to track the evo-
lution of each model galaxy both to higher and lower redshifts
(in terms of their progenitors and descendants). This approach
allowed us to study the later evolution of systems that are iden-
tified as proto-cluster regions and characterise the z = 0 descen-
dant mass distribution. GAEA follows the evolution of galaxies
across different cosmic epochs and environments by means of a
coupled system of differential equations, each of them describing
a single physical process responsible for the exchange of mass
and energy among the different baryonic components. The indi-
vidual prescriptions can be of empirical, analytical, or theoreti-
cal derivation and can involve the definition of free parameters
that are usually calibrated against a selected set of observational
constraints.

In this paper, we consider two different GAEA realisations
based on the model versions published in Hirschmann et al.
(2016) and Fontanot et al. (2020). Hereafter, we will refer to
these realisations as GAEA-H and GAEA-F, respectively. Both
model runs include a detailed treatment for non-instantaneous
chemical enrichment (De Lucia et al. 2014) and a prescription
for stellar feedback partly based on hydro-simulations. These
prescriptions allow us to reproduce the evolution of the galaxy
stellar mass function as well as cosmic star formation rate
up to z < 7 (Fontanot et al. 2017), as well the evolution of
the mass-metallicity relations and their secondary dependen-
cies (De Lucia et al. 2020; Fontanot et al. 2021). GAEA-F also
includes an improved treatment of cold gas accretion onto super-
massive black holes, an explicit treatment for AGN-driven winds
(Fontanot et al. 2020), and an updated tracing of the angular
momentum exchanges between different galactic components,
which we use to model galaxy structural properties (Xie et al.
2020). While retaining all successes of the previous model, this
update also reproduces the properties of the AGN populations up
toz~4.

For each model galaxy, GAEA predicts the expected broad-
band photometry in the H-band and in the Euclid visual band,
in addition to a number of physical properties and other photo-
metric bands. These model outputs have been used to construct
two independent lightcones (each for each model realisation)
using the algorithm described in Zoldan et al. (2017). Each light-
cone covers an aperture of 5°27 diameter and includes all model
galaxies from z = 0 to z = 4 down to Hg = 25.

In the simulations, galaxies keep their identity through time
and can be traced through the merger trees. Therefore, galaxies
that are found to belong to a galaxy cluster at redshift zero with
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amass Moy > 10'* M, inside rygy can be identified and labelled
as members of a proto-cluster at higher redshift in the lightcone.
The ensemble of the member galaxies defines the proto-cluster.

For our studies, we selected galaxies with the following mag-
nitude limits, my, < 24.25 for the near-infrared H-band and
my, < 25.10 for the visual band of Euclid®. The lightcone
databases provide observed and randomly perturbed magnitudes
according to the expected measurement errors. Here, we use the
unperturbed magnitudes. The limits correspond to an expected
S/N=5 Euclid will reach in the Wide Survey for extended
sources. For each galaxy, redshifts calculated from the sim-
ulations with and without peculiar motions are available. We
use the values without peculiar motion. Also, the photomet-
ric redshift was derived for each galaxy with the SED fit-
ting code Phosphoros developed in the Euclid Collaboration
(Paltani et al., in prep.), taking into account the photometric
noise expected in Euclid bands complemented by the ground-
based ones that will be available at the time of the Data Release
3 southern hemisphere* (Euclid Collaboration 2022). The light-
cone databases contain the entire probability distribution of the
derived photometric redshift. Here, we use only the median
values.

4. Extent of proto-clusters

In this section, we present estimates of the proto-cluster radius,
Ipc- We first derive a theoretical estimate for the radius evolution
of a spherical overdensity in Sect. 4.1 and compare the results to
simulations in Sect. 4.2.

4.1. Theoretical estimate

For 7y, we took the radius of the overdensity, which evolves into
a galaxy cluster with radius g in the spherical collapse model
described in Sect. 2. The proto-cluster radius, rpc in comoving
units, rcom, can then be determined from the overdensity ratio
through the relation:

-1/3
Qm Rov—DM )

200 )

Tcom = 1200 (

and the physical radius of the proto-cluster is given by rppys =
Feom/(1 +2).

Figure 2 shows the results of the calculations for the three
cosmological models listed in Table 1. The results for the ref-
erence and Planck cosmology are practically identical, while
those for the Millennium cosmology are different by a few per
cent. Chiang et al. (2017) published similar calculations based
on simulations, which are in good agreement with our results.
Similarly, Muldrew et al. (2015) used simulations to assess the
evolution of the proto-cluster radius, defined as enclosing 90%
of the stellar mass ending up in the z = 0 cluster and found sim-
ilar results. In their Fig. 2, we see that the physical radius shows
a similar function of time with a value ~2.5 times higher atz = 1
than at z = 0 and a factor of ~1.2 higher at z = 5.

For further practical work, we derived numerical fits to the
results for r.om. The following approximation, valid for the red-

3 We note that these magnitude limits deviate slightly from the limits
given for the survey in Sect. 1. The constantly evolving work on the
survey definition and in the science working group cannot always be
perfectly synchronised in the Euclid preparation phase.

* The photometric data used for the determination of the photometric
redshifts include the Euclid bands: Ig, Yg, Jg, Hg and the LSST bands:
u, 8 i z

10 - -

comoving

7/ T200 (z = 0)

physical

Radius

0.1 1.0
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10.0

Fig. 2. Evolution of the proto-cluster radius in comoving and physical
units scaled to rpp at z=0. Results for three cosmological models are
shown by red lines (reference model), blue lines (Millennium cosmol-
ogy) and dashed black lines (Planck cosmology). The over-plotted black
dots show the parameterised approximation of 7.y, (see Eq. (2)) for the
reference cosmology and 7y for the Millennium cosmology.

Table 3. Parameters describing the evolution of the proto-cluster radius
with redshift (see Eq. (2)).

Model A B C D

Reference 19.50 -22.75 9.05 -0.71
Planck 19.54 -22.83 9.08 -0.68
Millennium 19.38 2243 8.88 —0.88

Notes. The approximations are only valid in the redshift range z =
0.5-8.

shift range z = 0.5—8, provides an accuracy better than 1%, with
parameters listed in Table 3,

rcom/rZOO =A Z0'7 +B ZO'QS +C Zl'1 + D. (2)
We use this relation for the reference cosmology in the subse-
quent work in this paper.

4.2. Comparison to simulations

We can compare the theoretical predictions for the proto-cluster
radius with the distribution of the cluster member galaxies in
the MAMBO and GAEA lightcones. Here and in the following,
we use only proto-clusters that are fully contained in the field
of view of the lightcone and in addition reject a small number
of objects that are artefacts originating from common problems
with the lightcone construction.

Figure 3 shows two proto-clusters from the MAMBO simu-
lation, where galaxies inside and outside the proto-cluster radius
(in three dimensions) are marked as members and non-members.
As the centre of the proto-clusters, we chose the barycentre. As
proto-cluster members, we took those galaxies that are members
of the descendent cluster at redshift zero inside 9. All galax-
ies in a redshift slice with a width of five times the proto-cluster
radius are shown in projection on the sky. We note that the major-
ity of the proto-cluster members are located inside the estimated
proto-cluster radius, and a few non-members, marked in blue in
the figure, are found inside. These non-members are found close
to the cluster boundary and are not bound into the cluster during
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Fig. 3. Examples of two proto-clusters at redshifts 1.666 and 2.8335
with 148 and 22 members, respectively. The proto-cluster members are
shown as red-filled circles, while non-members inside the proto-cluster
radius are shown as blue circles. Other non-members outside the proto-
cluster radius in three dimensions are shown as small black dots, and
members of other proto-clusters are shown as full green circles. The
large black circle indicates the estimated proto-cluster radius, whose
size is indicated in the top left corner of the plot.

the following collapse of the system. Some of the non-members
are seen inside the circle in projection in the plots as black dots,
but they are outside the proto-cluster spheres. Members of neigh-
bouring proto-clusters in the same redshift interval are shown as
green symbols.

Figure 4 shows the three-dimensional radial distribution of
the galaxy number and number density of the members of
MAMBO, GAEA-H, and GAEA-F proto-clusters compared to
the radial distribution of non-members. The differential distribu-
tion in spherical shells is shown. For the proto-cluster centres,
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Fig. 4. Three-dimensional radial distribution of the member galaxies
in all MAMBO (top), GAEA-H (middle), and GAEA-F (bottom) proto-
clusters (z = 1.5—4). The radius is in units of the estimated proto-cluster
radius, rp.. The red lines show the numbers and densities of the proto-
cluster members, and the blue lines those of the non-member galaxies.
The solid lines show the galaxy number in the shells (left Y-axis), while
the dotted lines show the galaxy density in the shells (right Y-axis).

we used the barycentre, the mean of the mass distribution of all
proto-cluster member galaxies. The distance of the galaxies to
the centre in all proto-clusters was scaled to the estimated proto-
cluster radius, rpe = 7phys 7200- The radius, 7pphys, has been defined
in the sentence connected to Eq. (1). For the positions, the true
locations of the galaxies were used without redshift space distor-
tions due to galaxy peculiar motions.

The distributions of the galaxies in all three simulation data
sets look very similar. The contamination of non-members inside
the proto-cluster radius in the GAEA lightcones is higher than
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Table 4. Completeness and contamination of the members inside the
estimated proto-cluster radius, rp. and 1.2, for different redshift
shells for the MAMBO and GAEA samples

Redshift ~ Complet. Contam. Complet. Contam.
r < Fpe r<rpe r<12rc r<12r
GAEA H
1.54 0.74 0.13 0.88 0.21
1.5-2 0.70 0.17 0.84 0.25
2-3 0.76 0.12 0.89 0.20
34 0.80 0.08 0.91 0.16
GAEAF
1.54 0.75 0.12 0.88 0.21
1.5-2 0.70 0.16 0.84 0.25
2-3 0.76 0.11 0.90 0.20
34 0.81 0.07 0.90 0.15
MAMBO
1.54 0.78 0.043 0.91 0.11
1.5-2 0.76 0.053 0.90 0.12
2-3 0.79 0.034 0.91 0.11
34 0.81 0.038 0.92 0.11

that in the MAMBO lightcone. About 80% of the members are
located inside 7, with a contamination of ~5% (MAMBO), ~10%
(GAEA) non-members in three dimensions. About 90% of the
members are located inside 1.2 r,,. with a contamination of ~10%
(MAMBO) and ~20% (GAEA). At the moment we have no expla-
nation for this difference of the contamination in the two light
cones. Apart from this effect we see no significant difference
between the different simulation samples. The theoretically esti-
mated proto-cluster radius thus provides a good orientation for
the expected size of proto-clusters. Results for splitting the proto-
cluster sample up into three redshift shells are given in Table 4,
where the completeness is defined as the fraction of member-
galaxies contained inside the aperture radius compared to the total
number of member galaxies. We note little variation with redshift.

5. Radial galaxy density profiles

We used the GAEA and MAMBO simulations to study the typ-
ical radial density profiles of proto-clusters. Here and through-
out the paper, we use the barycentre of the galaxy population
as the proto-cluster centre. In Fig. 5 we show the mean three-
dimensional proto-cluster profile for the GAEA-F and MAMBO
samples for the redshift range z = 1.5—4. In addition we show
with data for GAEA-F in the range z = 1.5-2, that there is
no substantial change with redshift. The profiles were gener-
ated involving 6533 and 786 proto-clusters from the two simula-
tions, respectively. Since we used radii scaled to the proto-cluster
radius, 7pc, we also determined the mean densities as scaled
parameters in units of 4/3z7>,. The mean profile for GAEA-H
has the same shape but about 10% higher normalisation since
this sample has relatively more proto-cluster members.

We fitted the resulting profile with a model including a power-
law profile with a core and an additional inner and outer slope:

7 \2 —B+5 )2 —y+p+5
n(r):A(—) 1+(—)] l+(—)} .
re re s

The resulting fit parameters for the three-dimensional case
are shown in Table 5. We also determined the projected two-
dimensional profiles, which look similar with a flatter slope. The

3

100, '

Galaxy density [Volume, ™']

Radius/7,.

Fig. 5. Mean three-dimensional radial density profile of proto-clusters.
The black solid line and blue points show the mean profile for all proto-
clusters in the GAEA F lightcone in the redshift range z = 1.5-4, while
the green curve shows that for proto-clusters with z = 1.5-2. The blue
dashed curve shows the model fit. The red open symbols show the den-
sity profile for the clusters in the MAMBO lightcone (z = 1.5-4) for
comparison. The galaxy density is scaled to the volume of the proto-
cluster, volume,,. = (4/3)rr..

Table 5. Fit parameters for the proto-cluster profiles in three and two
dimensions for the formula in Eq. (3).

Sample A Te 1% B Ts y

3 dim.

GAEAH 117.7 0.1413 0.2163 0.635 1135 1159
GAEAF 1879 0.0625 -0.989 0.530 15.74 286.6
MAMBO 5532 02371 0.6368 0.790 16.71 198.3
2 dim.

GAEAH 3479 1.004 0.2121 298 2422 1050
GAEAF 59.09 0.0968 -0.110 0.254 15.61 364.0
MAMBO 1274 0.0209 -2.940 0.279 9475 12838

Notes. The radii, 7. and r,, are in units of ..

profiles were fitted with the same relation, and the results are
also shown in Table 5. In this case, r. and ry are projected radii.
Figure 5 shows that the fit provides reasonable approximations.
Actually, a fit with a function including only the first four param-
eters, with the first two terms on the right hand side of Eq. (3),
provides a good approximation up to r ~ rpc, but leaves a small
shallow tail beyond. To remove this particular feature with an
additional outer slope requires large values for the core radius,
ry, and the slope parameter.

One interesting result from the average projected proto-
cluster profile to keep in mind is that about half of the member
galaxies reside inside 0.5 rpc. That implies that the density inside
an aperture of 0.5 . is about 3 times higher than the density in
the annulus at r = 0.5 to 1 7.

Inspection of individual profiles shows that there is a large
variety of profile shapes. Figure 3 and in the Appendix Fig. A.3
show a selection of proto-clusters with some emphasis on sys-
tems with substructure. To devise a cluster detection method
that works with assumptions on the proto-cluster shapes, as, for
example, a matched filter algorithm, one needs an overview of
the variation of the proto-cluster structures. Any treatment that
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Table 6. Definition of the five different categories of proto-cluster den-
sity profiles.

Category Condition Np.  Percent
1 D1 >D2>D3 542 69
2 D1 > D3 > D2 33 4.2
3 D2 > D1 > D3 67 8.5
4 D2>D3>D1 127 16.1
5 D3>Dland D2 17 2.2

Notes. D1, D2, and D3 are the mean galaxy densities in the three radial
intervals, 0 to 1/3, 1/3 to 2/3, and 2/3 to 1 ry, respectively. The last two
columns give the number of proto-clusters and the percentage in each
category.

regards azimuthally symmetric shapes in first order would rely
on knowledge of profiles.

To get such an overview, we dissected the three-dimensional
profiles out to r, into three equal radial intervals and classified
the proto-cluster profiles into five categories according to the
density ratios of the different regions as listed in Table 6. Cat-
egory 1 and 2 have a central peak, 3 and 4 have the maximum in
the middle, and 5 has the maximum near 7. Table 6 also shows
the number of proto-clusters that fall into each category.

To display the variation of the profiles, we have determined
the mean profile for each category with a resolution of 8 bins out
to 1.6 rpc. We note that this provides a higher radial resolution of
5 bins inside rp, than the three radial bins used for the categori-
sation. This allows us to show the profiles in more detail. Not to
let those proto-clusters with the largest number of galaxy mem-
bers completely dominate the results, we use a weighting with a
factor of ";1/ 2 per proto-cluster in averaging the profiles, where

Ngy is the total number of members in the simulations. Due to
the scaling with proto-cluster radius and this weighing scheme,
the resulting densities loose the normal physical units, and we
show relative values. These mean profiles for categories 1-5 are
shown in Figs. A.1 and A.2 in the Appendix. We note first of all
that 73.2% of the proto-clusters have a high central density inside
0.2 rpe (much higher than in the other radial bins). 4.2% of these
proto-clusters have a higher density in the third than in the second
bin. Butas shown in Fig. A.1 they have mostly very compact cores
with few galaxies outside. The 24.6% of category 3 and 4 have the
highest density in the middle radial region. Two examples of such
clusters are shown in the upper two panels of Fig. A.3.

Only 17 proto-clusters have the highest density in the region
from 2/3 ryc to 17,c. An example is shown in the bottom panel
of Fig. A.3. Among these cases with high density in the outer
annuli we find binary and multiple systems, which will neverthe-
less collapse into a single cluster by z = 0. Thus, the majority of
the proto-clusters will show a significantly higher contrast of the
central region compared to the overall system. It also implies that
the central region will collapse earlier than redshift zero for most
proto-clusters to form a smaller galaxy group or cluster first.

6. Density contrast in the projected galaxy
distribution

6.1. Density contrast with respect to the global sky
background

To explore the efficiency with which proto-clusters can be
detected in the Euclid Wide Survey, we study the projected
galaxy density contrast of proto-clusters against the galaxy back-
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requirement for the photometric accuracy.

ground in this section. Here and in the following we designate all
galaxies outside the proto-clusters, that is either in front or in the
back, as background galaxies. We make use of the photometric
redshifts that have been modelled in the simulations. To find the
majority of the members of a proto-cluster we have to consider
a selection window for the redshifts wide enough to cover the
uncertainties of the photometric redshifts. Using the MAMBO
lightcone, we illustrate in Fig. 6 the median photometric errors
corresponding to including 50-90% of all galaxies at a given
redshift, which we define as ‘completeness’. These photometric
errors constitute the redshift windows used to detect PC. The half
window size is shown as photo-z error parameter as a function
of redshift in the Figure. We will designate the redshift inter-
val for a 50% completeness limit as A; (50%). These calculations
have been performed for all galaxies in the lightcone, including
non-members, for better statistics in 132 redshift bins. In each
bin, the galaxies were sorted by Az, the deviation of the photo-
metric redshift from the true one. The maximum Az of the 50%
smallest values yields then, for example, A, (so%). This complete-
ness limit is identical to the median. We used this value in most
of the following examples because it provides a detection effi-
ciency close to the maximum, as shown in Sects. 6.2 and 7. Also
shown is the official Euclid requirement for the redshift accuracy,
Az = 0.05 (1 + z) (e.g. Sartoris et al. 2016). This requirement is
close to the median curve. At redshifts between z=1.5 and 2.2,
it is worse than the requirement. With increasing redshift, it gets
better and falls below the requirement at 7 = 3—4. At these higher
redshifts, the photometric bands bracket the Ly-break better.
Galaxy counts and densities in proto-clusters and back-
ground in the MAMBO lightcone (limited by the redshift range
corresponding to given redshift uncertainties) were calculated
for different aperture sizes (with respect to ry)’. In practice,
we counted all known proto-cluster members inside the aper-
ture radius and all other galaxies as background in the cylin-
ders defined by the redshift uncertainty, Az (x4, and the aperture

5 We present here only the results from the MAMBO lightcone due
to some problems in the cross-identification of individual proto-cluster
members in different simulation result tables at the time of writing. This
problem is being solved.



Euclid Collaboration: A&A, 693, A59 (2025)

T T T T T
100 F .
5 L
0
S
o}
C
>
X
o
@]
&}
10F E
F - 15<2<2
Te = 0.5 Te
0 50 100 150 200 250 300
Total proto—cluster galaxy number
100 DUUTEE 3
©
QO
£
)
C
>
X -
O 3
S E
&
3=z =4
"""" T = 1T 7o
,‘ 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Total proto—cluster galaxy number
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aperture of 0.5 . and the bottom row in the range z = 3—4 inside an
aperture of 7. For the galaxy selection a redshift interval corresponding
to A; (so%) was used.

area. This was done for different redshift regions and different
photometric uncertainty limits. Figure 7 shows two examples of
the galaxy counts in proto-clusters and background for apertures,
Fap = 0.5 rpc for z = 1.5-2 and ryp = rpe for z = 3—4 using a red-
shift window defined by A, (s0%). We note that the background
galaxies always outnumber the proto-cluster galaxies. This is
due to the fact that background galaxies are sampled over a much
larger line of sight than proto-cluster members due to the limited
photometric redshift accuracy, as will be explained below. We
show the data as a function of the total galaxy number of the
proto-cluster, which is a good proxy for the proto-cluster mass
(Rykoff et al. 2014). Of course, the number of recovered proto-
cluster galaxies increases with the total galaxy number, but also,
the background increases somewhat due to the increase of 7.
Statistically, the number of detected galaxies with large aperture
radius (r ~ 2.5 ry,) scatters around 50% of the total number by
construction for a A; (sog) limit.

Results for the densities of the detected galaxies are shown
in Fig. 8. Again, the projected densities of the background are
always larger than the proto-cluster densities. As expected the
galaxy density in the background is constant, while the aver-
age projected galaxy density increases with proto-cluster size
and richness, as the proto-cluster volume increases. The latter
increase is mainly shown by an increase in the mean density and
its lower limit. Figure 9 summarises the results for the density
statistics as a function of aperture radius and redshift for a 50%
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Fig. 8. Galaxy densities in proto-clusters (red) in comparison to the
background (blue) in the redshift range z = 1.5-2 with an aperture
of 0.5 .. For the galaxy selection a redshift interval corresponding to
A, (s0%) Was used.

completeness and Euclid magnitude limit. Here we note that
the background densities appear constant with changing aperture
radius as expected. The densities for the proto-clusters, however,
decrease with increasing aperture radius due to the decreasing
density profiles.

The fact that the projected background density is often very
much larger than the proto-cluster density is a challenge for the
reliable detection of the proto-clusters. Thus, before proceeding
further, we study the reason for this situation in more detail. We
have shown in Sect. 2 that the proto-cluster overdensities are
not very large since we capture the proto-clusters before turn-
around. This overdensity has to be compared with the line-of-
sight ratio across the proto-cluster and the redshift range defined
by the photometric redshift accuracy. In projection, we sample
all the galaxies in the line-of-sight of the proto-cluster, which
have a redshift inside the uncertainty limits of the photometric
redshifts. Since the line of sight distance interval corresponding
to the redshift uncertainties is much larger than the diameter of
the proto-clusters, more background galaxies are sampled than
proto-cluster members by the photometric redshift selection, in
spite of the moderate galaxy overdensity in proto-clusters. To
illustrate this, we show in Fig. 10 the ratio between the distance
interval corresponding to the photometric redshift uncertainty
and the proto-cluster diameter as a function of redshift. Here, we
have used a redshift interval of A; (50%); with a smaller complete-
ness, the volume ratio would be smaller, but we would also sam-
ple fewer member galaxies. We clearly see that the volume from
which the background galaxies are sampled is much larger than
the proto-cluster volume (which has been simply approximated
here by a cylinder). This large volume ratio is the consequence
of using only broadband photometry for the redshift estimates.

6.2. Significance of the density contrast

An additional problem complicates the detection of proto-
clusters. While it is sometimes assumed naively that one detects
the proto-clusters in a distinct and smooth background field,
which is characterised by Poissonian density fluctuations, we
are facing the situation that we have to detect the proto-clusters
against a background characterised by the presence of cosmic
large-scale structure. Since the aperture sizes for detecting proto-
clusters sample the background at relatively small scales, where
the cosmic large-scale structure is well in the non-linear regime,
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7(A; (50%))/Tpc)- The ratios for all MAMBO proto-clusters as a function
of redshift are shown.

we have to cope with background fluctuations larger than the
Poisson noise for the relevant galaxy counts. We illustrate this
by means of the MAMBO simulation below.

The rms of the background density fluctuations was deter-
mined in different aperture radii in five redshift ranges (z =
1.5-2,2-2.5,2.5-3,3-3.5, and 3.5—-4). The background densi-
ties were evaluated at the positions of the proto-clusters, while
the proto-cluster galaxies were excluded from the background
density calculation. In principle, one could have also used ran-
dom positions, but in our approach, we include the small effect
that a tiny part of the line of sight is occupied by the proto-
cluster and not by the background. This time the aperture radius
is kept fixed for a chosen aperture value and not scaled with the
proto-cluster radius. For the line of sight integration we take the
redshift interval A; (s04,). We show the results in Fig. 11 for six
aperture radii (4, 5, 6, 7, 8, and 9 arcmin) and compare them with
Poisson errors. While the Poisson errors decrease steadily with
the aperture radius, as expected, we note hardly any decrease
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in the variance, except for the first aperture radius bin, where
shot noise still plays an important role. The variance decreases
with aperture radius not because of the improving count statistics
but because of the decreasing variance of the large-scale struc-
ture with scale. This decrease is comparatively slow and hardly
noticeable in the relevant scale range. For this reason, the sig-
nificance of detection above the background cannot easily be
improved by increasing the aperture size, as it would be for Pois-
son errors.

To characterise the significance of detection of the proto-
clusters we take the ratio of the detected counts to the rms of the
background fluctuations. We do not include the shot noise of the
proto-cluster counts, which would be important in the calcula-
tion of the error of the detected signal. We look here just at the
detection significance. We determine the detection significance
for every proto-cluster by using the actually detectable counts in
the simulations, and for the background, we take the rms of the
background counts determined from all proto-cluster positions in
the same redshift bin and for the same aperture radius. We note
that the fluctuations on the relevant scales are actually mildly non-
linear and therefore the use of the RMS for the background noise
is only a reasonable approximation. This will be accounted for
more precisely in the practicle application with the calibration of
the proto-cluster detection techniques in simulations. Examples of
the results are shown in Fig. 12 for the redshift range z = 1.5-2
for aperture radii of ,, = 0.5 and 1.0 r,,.. We show the detection
significance as a function of the total galaxy number belonging to
the proto-clusters in the simulation.

The values for the significance are small. There is a corre-
lation of the significance with the richness of the proto-cluster.
This correlation is more pronounced for the better number
statistics with the larger aperture. For the smaller aperture the
behaviour for the less rich proto-clusters is dominated by Pois-
son noise, but a correlation becomes apparent at richer proto-
clusters: the mean and the lower limit of the significance clearly
increases.

The upper panel of Fig. 13 summarises the significance stud-
ied for a A; (504 limit. In the plot, we show both the mean and
maximum values for the significance of each parameter selec-
tion. The maximum values for the smallest aperture radius are
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Fig. 12. Detection significance of proto-clusters from the MAMBO sim-
ulation in the redshift interval z = 1.5-2. The panels show results for
aperture radii of 0.5 (top) and 1 r, (bottom). For the galaxy selection a
redshift interval corresponding to A (so%) Was used.

relatively high due to the large Poisson noise for small counts.
We note that for the highest redshift bin, the maximum values
of the significance is always highest for the same reason, but for
the mean values, the highest redshift bin is not more significant
than the lowest one.

We also explored if we can increase the significance by using
a higher or lower completeness limit so that we can sample more
galaxies for each proto-cluster or deal with a smaller redshift
range for the background. The lower panel of Fig. 13 shows
how the significance changes with the completeness limit for
two apertures (0.5 and 1 r,¢) and three redshift intervals. We note
that the 50% or 60% completeness limits provide the maximum
in all cases. Otherwise, the curves are relatively flat. Only for the
highest redshift bin there is a notable decrease of the significance
with increasing completeness because it is closer to the detec-
tion limit for the galaxies. The main conclusion is, however, that
there is not much room for improvement in the detection effi-
ciency with a different choice of the completeness limit.

Overall, a strategy that uses A; (s04) and apertures smaller
than 1 rp. (for example 0.5 r,c) provides a close-to-optimal solu-
tion. While at decreasing radii the signal-to-noise gets better,
the statistics gets worse, and therefore a radius of around 0.5 7,
gives a good compromise. Thus for most of the following analy-
sis we use this selection.
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Fig. 13. Detection significance of proto-clusters as a function of aper-
ture radius (top) and as a function of completeness limit (bottom) for
three different redshift intervals. Top: The solid curves show the mean
significance, while the dashed curves show the maxima. A redshift inter-
val of A; (s0%) was used. Bottom: The completeness limit, Az (X%), cov-
ers the range 30-90%. The solid lines show the results for an aperture
radius of 0.5 ;.. and dashed lines for 1 7.

An improvement can, of course, be expected from using a
probability-based detection algorithm, for example, a matched
filter technique. The present study provides a useful guideline
for such a method since it shows which proto-cluster region con-
tributes most to the detection signal.

7. Detection significance with local background
assessment

In this section we explore whether the detection significance can
be improved with a local background assessment. In the previous
section, we used the global background variance for the signifi-
cance calculation. Here, we test the behaviour of the background
if the background is taken for each proto-cluster from an annulus
around it and its variance determined from the data. Due to the
spatial correlation of the galaxy density in the large-scale struc-
ture, we could expect that there would be a correlation between
the background galaxy density inside the proto-cluster aperture
and that of the surrounding annulus. This correlation is shown
for the simulated MAMBO proto-clusters in Fig. 14. Since there
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proto-cluster. The colours mark different redshift intervals from z = 1.5
to 4.0 with a width of Az = 0.5.

is a clear correlation, the estimated background variance can be
reduced compared to that considered in the previous section if
we add information about the local background.

We estimated the background in an annulus around the detec-
tion aperture with radii of 9 and 13 arcmin. The radii of proto-
clusters for masses of 10'* and 10> My, for different redshifts
can be found in Table 7. For z = 1.5 we find . ~ 4.4-9.6 arcmin
and for z = 4 we get rpc ~ 3.4-7.4 arcmin for this mass range.
The background region is thus outside the proto-clusters. The
correlation of the background in the aperture and the annulus,
shown in Fig. 14, helps us in the following way. A measurement
of the background in the annulus can be used to normalise the
background in the aperture region. The residual aperture back-
round will then be smaller than the variance without this nor-
malisation. The relevant residual background variance is then the
variance of the ratio of the galaxy density inside the aperture to
the galaxy density in the background annulus. It is the scatter of
the relation shown in Fig. 14.

In Fig. 15 the rms of the density fluctuations is shown as a
function of aperture radius and redshift in an equivalent way to
the results in Fig. 11. Thus, the results can be directly compared
in these figures, and we note, in most cases, an improvement of
almost a factor of 2. The improvement is due to the fact that
the variations in the projected galaxy density background are
caused only to a minor degree by Poisson noise but mostly by
large-scale structure, which can, for example, be well described
by clustering statistics like the two-point correlation function.
Therefore we obtain a better estimate of the local background if
we take a measurement in its immediate neighbourhood.

This has, of course, an effect on the detection significance,
which is illustrated in Fig. 16. We note that now more proto-
clusters reach a detection significance of 207, and a large fraction
of detections has significances above 1o, which was not the case
in the previous section.

Figure 17 (top) summarises the results on the detection sig-
nificances. This figure can be compared to Fig. 13, with a change
in the radius units to arcmin. We note that the local back-
ground assessment can provide a significant improvement. For
real observations, the method can be tested by studying the spa-
tial correlation of the galaxy density fluctuations in the field out-
side the proto-clusters and by using these results to determine the
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densities (solid lines) with a local assessment as a function of aperture
radius for five different redshift intervals.

rms of the background fluctuations. This can actually be applied
in most detection methods, for example, for matched-filter detec-
tions. In practice, the filter would, for example, include the back-
ground ring with a negative weighting.

The bottom panel of Fig. 17 shows, analogously to Fig. 13
the mean detection significance as a function of the photomet-
ric redshift completeness limit for five different redshift inter-
vals. The solid lines are for an aperture radius of 0.5 r,c and the
dashed lines for 1r,.. We note that the results for the redshift
intervals A; 30%) and A; 4o%) have improved in comparison to
the other redshift intervals, but A, (504, is still a good choice for
the detection.

The practical meaning of the significance of a detection algo-
rithm depends also on the rareness of the objects to be detected.
If a large sky area has to be inspected to find an object, one needs
a high detection significance threshold to keep the detected sam-
ples reasonably pure. In our case, we will find below that proto-
clusters are quite abundant in projection on the sky. Therefore,
we can still obtain a valuable proto-cluster candidate sample
with a low significance threshold. The discussion section pro-
vides further details on this point.

In summary, we conclude that the best strategy for the detec-
tion of proto-clusters is to use an aperture radius smaller than
rpe and a local background assessment. Also, a redshift range
given by A; 509 is quite optimal, but an exploration of higher
completeness limits is often not much worse. A more sophisti-
cated detection algorithm will, in this respect, anyway, include a
probability distributions of photometric redshifts.

8. Mass-richness relation

For galaxy clusters, the richness, the number of member galaxies
inside a given radius and magnitude limit can be used as a proxy
for the cluster mass (e.g. Andreon & Hurn 2010; Rykoff et al.
2014; Castignani & Benoist 2016). Therefore, we test in this
section how tight the mass-richness relation is for the proto-
clusters in the simulations. Here, we inspect the intrinsic rela-
tion, including all known proto-cluster members in the simula-
tions (with magnitude limits defined in Sect. 3) and not only the
ones that would be detected with a certain prescription.

The mass-richness relation was determined for the
MAMBO, GAEA H, and GAEA F samples of proto-clusters.
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Fig. 16. Detection significance for proto-clusters for the redshift range
z = 1.5-2 (top) and z = 3—4 (bottom). For the galaxy selection a
redshift interval corresponding to A; so%) was used. Top: A detection
aperture of 5 arcmin was applied with a local background assessment.
Bottom: An aperture of 7 arcmin was used.

Here, the mass of the system is that of the descendent cluster
at z = 0 inside ryy since we attribute all the mass of the
descendent cluster to the proto-cluster at any redshift. We
binned the proto-clusters into subsamples of redshift bins with
a width of Az = 0.25 starting at z = 1.5 and an extra bin for
z = 1.5-2. This leaves several hundred proto-clusters per bin for
the GAEA samples and an order of a hundred for MAMBO.

The results are shown in Fig. 18 for the GAEA H simula-
tions. The results from the other lightcones look similar. We find
a few proto-clusters with very low member numbers well out-
side the variance of the number counts. They were identified as
artefacts due to some common problems in the production of the
lightcones. We excluded them from our study by a cut, which
removes all cases with a negative 30~ deviation from the mean
relation.The relative scatter that we observe in the relations, as
shown for some examples in Fig. 18, is typically around 40%
and decreases with richness to about 20%. This scatter is dis-
tinctly different from Poisson uncertainties und usually signifi-
cantly larger. We provide some further illustrations of this fact
towards the end of this Section.

The distribution of the number counts in Fig. 18 and all other
relations studied is highly suggestive of a linear relation in loga-
rithmic space. Therefore, we fitted the distribution by a relation
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Fig. 17. Mean detection significance of proto-clusters as a function of
aperture radius (top) and as a function of the completeness limit (bot-
tom). The set-up is similar to Fig. 13, but with a local background and
an aperture radius in arcminutes. Top: A redshift interval of A; (so) wWas
used. Bottom: Values of the completeness limit, Az (X%), in the range
of 30-90% were used. The solid lines show the results for an aperture
radius of 0.5 7, and the dashed lines show the results for 1 7.

of the form:

M a
Ng(M, 7) = Ngo(Z) (m) . @

The fits are shown in the figures as dashed lines. The fit
results for the normalisation as a function of redshift are shown
in the top panel of Fig. 19 for the three sets of simulations. The
results are encouragingly similar. We fitted this mass-richness
relation normalisation as a function of redshift with a third-order
polynomial expression. The lines in Fig. 19 show the fitted func-
tions, and the resulting parameters are given in Table 8.

The slope of the fitted mass-richness relation for the dif-
ferent redshift shells is shown in the bottom panel of Fig. 19.
The values are about 0.9 or a little higher. Table 8 also shows
the mean slopes averaged over the redshift intervals. This is in
line with the observational finding that the efficiency of galaxy
formation decreases with halo mass in the mass range above
10'2 M, (e.g. Behroozi et al. 2013; Kravtsov et al. 2018). The
simulations attempted to reproduce this empirical finding. It is
also good to observe that the mass-richness relations are similar
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Fig. 18. Mass-richness relation for GAEA H for the redshift range z =
1.5-2 (top) and z = 3-3.25 (bottom). The small black dots show all
proto-clusters, and the blue dots are the ones above the cut, which is
shown as a solid black line. The linear regression fit to the relation is
shown by a dashed line. My is in units of M.

in all three approaches of painting galaxy evolution onto the cos-
mological simulations. The small deviations are also due to the
limited statistics.

We also studied the variance of the richness in the mass-
richness relations because we wanted to see if we could approx-
imate this quantity with simple Poisson statistics. We used the
GAEA sample here for better statistics. We divided the sample
into redshift bins with the division described above. Each of the
eleven redshift bins was subdivided into several mass bins, with
at least 50 members per interval. This left us with 12-25 mass
bins per redshift bin. For each subsample, we determined the
root mean square (RMS) deviation between the mean number of
galaxies in the bin and the actual counts. The results are plotted
for the GAEA H sample in Fig. 20. We compare the results for
the scatter in the galaxy counts with the expectation for Pois-
son statistics. The relative scatter for the galaxy counts in the
simulations is fairly constant as a function of the mean galaxy
number: it decreases from about 0.4 to 0.25 over the range of
galaxy counts from 3 to 200. This is distinctly different from the
Poisson distribution, where the relative RMS changes by a factor
of about 8. This deviation from Poisson statistics is observed in
the simulations. At least here, the formation of galaxies in the
overdense region of the proto-cluster is not a Poisson point pro-
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Fig. 19. Top: Normalisation, Ny, for the mass-richness relation as a
function of redshift. The lines show the third-order polynomial approx-
imation. The normalisation is given for log,, M = 14, with M in units
of solar mass. Bottom: Slope parameter, a, of the mass-richness relation
as a function of redshift. The dotted lines show fits of linear relations.
The colours have the same meaning as above.

cess. It is not immediately clear if this is purely a result of the
process of ‘painting galaxies onto the N-body simulations’ or if
we should expect a similar behaviour in nature. But this exercise
gives at least a warning that we should not use simple Poisson
statistics for the uncertainty of the mass-richness relation unless
we have shown that it works for observational data.

To further illustrate this difference between the variance of
the number counts for a given mass and a Poisson distribution,
we study the distribution of the richness for a given mass in two
narrow mass intervals as shown in Fig. 21 for the redshift range
z = 1.5-2. The mean masses in the intervals are ~1 x 10" M,
and ~4.5 x 10" M. To remove the scatter in the number counts
due to the width of the mass interval, we normalise the number
of members of each proto-cluster by a correction factor 712/mp.
If for example the mass of a proto-cluster in the first bin is 1.15x
10'* My, we multiply the number counts by a factor of 1/1.15.
We note that in both cases, the observed distribution is wider
than the Poisson prediction, and this difference is much more
pronounced in the higher mass bin.

Overall, we find mass-richness relations that are close to lin-
ear with logarithmic slopes close to 0.9. Again, we emphasise
that these are the relations found in the simulations with known
galaxy memberships.



Euclid Collaboration:

A&A, 693, A59 (2025)

Table 7. Statistics concerning the proto-cluster abundance and sky coverage as a function of redshift.

Redshift Volume N(>Myy) NG2Myy) NGSMyy) NGMs) rad(Myy) rad(Mis) Area
(deg‘z) (arcmin)  (arcmin) (degz)
0.50 0.68 5.47 1.64 0.21 0.02 6.528 14.064  0.0372
1.00 2.98 23.82 7.15 0.89 0.11 5.079 10.943  0.0225
1.50 4.78 38.21 11.46 1.43 0.17 4.447 9.581 0.0173
2.00 5.67 45.38 13.62 1.70 0.20 4.084 8.799 0.0146
2.50 5.98 47.86 14.36 1.79 0.22 3.842 8.278 0.0129
3.00 5.97 47.78 14.33 1.79 0.22 3.665 7.896 0.0117
3.50 5.80 46.43 13.93 1.74 0.21 3.527 7.599 0.0109
4.00 5.56 44.48 13.34 1.67 0.20 3.415 7.358 0.0102
4.50 5.29 42.29 12.69 1.59 0.19 3.322 7.157 0.0096
5.00 5.01 40.07 12.02 1.50 0.18 3.243 6.986 0.0092
5.50 4.74 37.91 11.37 1.42 0.17 3.174 6.839 0.0088
6.00 4.48 35.86 10.76 1.34 0.16 3.115 6.712 0.0085
6.50 4.24 33.92 10.18 1.27 0.15 3.064 6.601 0.0082
7.00 4.02 32.13 9.64 1.20 0.14 3.019 6.505 0.0080
7.50 3.81 30.45 9.13 1.14 0.14 2.981 6.422 0.0078
8.00 3.62 28.92 8.68 1.08 0.13 2.948 6.350 0.0076
8.50 343 27.46 8.24 1.03 0.12 2919 6.290 0.0074
9.00 3.27 26.16 7.85 0.98 0.12 2.896 6.239 0.0073

Notes. Column (1) gives the upper bound of the redshift interval with width Az = 0.5, Column (2) shows the volume per deg” in units of 10° Mpc?,
Columns (3-6) provide the number of proto-clusters in this volume with mass >10'%,2 x 10,5 x 10'* and 10" M,,, respectively, Columns (7,8)
give the physical radii of proto-clusters with masses of 10 and 10'> M, and Column (9) shows the sky area covered by a proto-cluster with a

mass >10'* M.

9. Proto-cluster abundance and sky coverage

The abundance of proto-clusters is determined by their defini-
tion, which in our study is given by the statement that they evolve
into present-day galaxy clusters with masses My > 10'* M.
Practically, we defined proto-clusters above as all galaxies that
will end up in the descendent cluster at z = 0 inside 799. Sim-
ilarly, we associate all matter that will finally be assembled in
the zero redshift cluster as belonging to the proto-cluster. This is
exactly the mass contained inside rp in the top-hat overdensity
model. Thus, in this context, the proto-cluster has the same mass
as the descendent cluster at all times. Therefore, the density of
proto-clusters for a certain mass limit in comoving coordinates
is that of the present-day clusters above that mass limit. The
cumulative present-day cluster mass function, n(> M), can be
obtained from observations, for example, from the cluster abun-
dance in the REFLEX survey of X-ray luminous galaxy clusters
(Bohringer et al. 2013, 2014), one of the best defined and com-
prehensive galaxy cluster samples in the nearby Universe. The
cumulative mass function can be approximated by the following
function:

where My, is the proto-cluster mass in units of 10'* M, for a
fiducial radius of ry, @ = 1.237 x 10 Mpc™3, 8 = 0.907,
v =0.961, and 6 = 0.625 (Bohringer et al. 2017). For the calcu-
lation of the comoving volume as a function of redshift, we used
the reference cosmology. Table 7 shows the results for differ-
ent lower mass limits for volumes for which proto-cluster counts
were integrated over redshift intervals of Az = 0.5. The redshifts
listed in the Table, give the upper bound of the redshift interval.
The Table also provides values for the proto-cluster radii cal-
culated by means of Eq. (2) in units of arcmin on the sky for
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Table 8. Fit parameters of the polynomial expression for the normali-
sation, Ngo(z) = a + b z + ¢ 2> + d 2°, of the mass-richness relation as
a function of redshift for the three proto-cluster samples. We also show
the slope, @, averaged over the redshift intervals.

Sample a b c d ()
GAEAH 95512 —47.695 7.339 -0.3104 0.93
GAEAF 73.268 -36.778 6.577 -0.4452 0.93
MAMBO 206466 -168.640 51.386 -5.5446 0.92

proto-clusters with masses of 10'* M, and 10'> M, and sky sur-
face areas of proto-clusters with masses >10'* M,

Based on the proto-cluster abundances described above, we
can study how well we can separate proto-clusters in the sky
if we have only photometric redshifts. We look at the frac-
tion of the sky covered by proto-clusters within a redshift slice,
which corresponds to the uncertainty of photometric redshifts.
For the study, we select all the proto-clusters and their member
galaxies from the MAMBO lightcone in redshift intervals given
by the photometric redshift accuracy for a 50% completeness
limit and show how they are projected onto the sky. Figure 22
shows proto-clusters and member galaxies selected from red-
shifts around z = 2 with a redshift range of A s0%). The core
regions (r < 0.5rp), which will stick out due to their higher
density contrast, are highlighted in the plot.

In total, there are 132 proto-clusters; in this exercise, we also
included proto-clusters that are not completely contained in the
field of view of the MAMBO lightcone.

We note that the sky is indeed densely covered by the proto-
clusters. By just integrating the surface area of each proto-cluster
(inside rpc), taking into account that some proto-cluster have
some of their areas outside the lightcone, we find that the sum
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Fig. 20. Relative rms deviation of the galaxy number counts as a func-
tion of the mean number of galaxies for the proto-clusters in each mass-
redshift bin (data points). We also show the expectation for the scatter if
it would be governed by Poisson statistics, which is shown by the solid
line.
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Fig. 21. Comparison of the distribution of the galaxy membership
counts (richness) for given mass and the prediction for Poissionian scat-
ter (black curves). The mean masses in the interval are 10'* M (red
curve) and 4.5 x 10" M, (blue curve), respectively. The curves show
cumulative histograms normalised to unity. The data are taken from the
GAEA F lightcone in the redshift interval z = 1.5-2.

of all proto-cluster areas is 91%, while the fraction of covered
sky is about 59%, due to overlaps. We have seen in Sects. 6 and
7, however, that proto-clusters are detected with sufficient sig-
nificance around 20 only at radii smaller than the proto-cluster
radius and in Sect. 5, we showed that typically half the mem-
ber galaxies are found inside 0.5 rp,c where they have a 2.7 times
higher projected density than in the annulus around. Therefore,
to give an impression of the sky coverage of the recognisable
core regions of the proto-clusters, we also quote the results for
proto-cluster radii of 0.5 rpc, which is a total fractional area of
23% and a fraction of the sky covered of 21%. Figure 23 illus-
trates the case for both proto-cluster radii. We note that in some
regions, the proto-cluster cores overlap, which is the result of
clustering in large-scale structures.

We can, however, look at this from a more practical point
of view. If we relax our ambition to detect all proto-clusters
with a final mass of 10'* M, and look, for example, only at
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Fig. 22. Proto-clusters and their galaxies in a redshift slice around z = 2
with a redshift range according to the photometric redshift accuracy lim-
its for 50% completeness and M,. > 10" M. The dense core regions
inside r < 0.5 ry,c are shown by black circles and red dots for the galax-
ies, while the outer regions are shown in grey.

1.0 “=--a___ R —
C TU e eee oL M > 10" Mg 4100 &
S e (]
S =
=
S 8
s o
Q.
= -
£ o
T 0.1 5
Q0
£
>
z
== filling factor ... number of PC
1 1 1 1 WO
1.5 2.0 2.5 3.0 3.5 4.0
Redshift

Fig. 23. Number of MAMBO proto-clusters and the sky-filling factor
in a A, (so%) redshift interval as a function of redshift and proto-cluster
mass limit. The numbers are only shown for the sample with M,. >
10'* M, as a dotted line. Solid lines show the fraction of the sky covered
by the proto-clusters, and the dashed lines display the combined sky
area of the proto-clusters. The thick lines with larger data points show
the results for the core regions, while the thin lines show those for the
region out to r,. For the core regions of the M, > 3 x 10" M, proto-
clusters, the dashed and solid lines overlap.

proto-clusters above a mass limit of 3 x 10'* My, the situation
looks much better, as shown in Fig. 24. If we increase the mass
limit even further, for example, to 8 x 10'* M, we find only
none to three proto-clusters per A, so%) in the MAMBO light-
cone, with filling factors of a few per cent. Only in the high-
est redshift bin, are there four proto-clusters with a filling factor
of 7%. These larger mass objects correspond probably better to
the typical proto-clusters that have been identified in optical sur-
veys. If we had included smaller systems (<10'* My), the pic-
ture would have looked worse. Thus, the whole problem is that
of detecting massive proto-clusters in the presence of large-scale
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Fig. 24. Proto-clusters and their galaxies in a redshift slice around z = 2

as in Fig. 22 but with a higher mass limit of the proto-clusters of M. =
3x10'* M. Symbols and colours have the same meaning as in Fig. 22.

1.0

structures in the background, a problem that we have already
encountered in section 6, which has already been taken into
account in the calculation of the detection significance. It there-
fore appears that targeting proto-clusters with a mass limit of
10'* My, may be ambitious. In Fig. 25 we also show the sky cov-
erage for M > 10'* M, proto-clusters around redhift z ~ 3.5.
The sky coverage is less dramatic than in the low redshift case.
But we note in all three pictures the substantial clumping of the
proto-clusters. This may sometimes cause difficulties in clearly
separate structures, which are identified with separate proto-
clusters in the simulations.

In Fig. 23, we summarise the results for our target red-
shift range at eight redshift values. We show the sky coverage
of the proto-clusters in the A; (so%) redshift slices and also the
sum of their sky area. The sky coverage factors are decreasing
with redshift. Since only the centres of the proto-clusters will be
detectable and their sky-filling factors never exceed 30% even
for the worst case, proto-clusters should, in general, be separa-
ble from detection algorithms, except for the regions of proto-
superclusters.

10. Discussion

The previous sections have shown that the approximate ana-
Iytic concept for the prediction of the proto-cluster properties
such as size, density contrast, and abundance, developed above,
can provide a robust guideline to explore proto-clusters in the
Euclid Wide Survey. In particular, the prediction for the proto-
cluster radius gives a good approach to defining a fiducial radius
for a proto-cluster. In addition, we have obtained further useful
descriptions, such as the typical proto-cluster profiles and their
variations by means of the simulations. We note that some of
the presented properties are intrinsic in the sense that they are
described on the basis of the information given by the simula-
tions. This includes the proto-cluster radii, profiles, abundances,
and mass-richness relation. In contrast the detection signifi-
cances are observed properties, and in their case the information
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Fig. 25. Proto-clusters with M. > 10'* M, and their galaxies in a red-
shift slice around z = 3.5 with a redshift range according to the pho-
tometric redshift accuracy limits for 50% completeness. Symbols and
colours have the same meaning as in Fig. 22.

from the simulations that is used in the same as would be avail-
able to an observer.

As an application of the information given in Table 7, we
calculate the expected volumes of proto-clusters and compare
them to some observed examples in the literature. From the
radii given in arcmin, we calculate the comoving volumes for
proto-clusters with a descendent mass of 10" M, at redshifts
2, 3, 4, and 5 with results of about 9700, 13 000, 15000, and
16 000 Mpc?, respectively, and compare them to the volumes
assigned to some prominent proto-clusters by Casey (2016). The
quoted volumes for COSMOS (z = 2.10) and (z = 2.47) of about
15000 Mpc? are larger than what is expected for the most mas-
sive proto-clusters, and one might conclude that we are looking
at two or more closely neighbouring structures, as we see them
in Figs. 22, 24, and 25. The combined volume of three fields
in SSA22 (z = 3.09) with a value of 21 000 Mp(:3 is consistent
with the expectation for massive proto-clusters if we take the
three fields as different systems. The value of 20000 Mpc?® for
HDF 850.1 (z = 5.18) is a bit high but could still be explained
by one very massive proto-cluster if the boundary was con-
sidered slightly too generous. For MRC1138-256 (z = 2.16)
and AzTEC-3 (z = 5.18) the observed values are comparably
small, and either the volumes assigned concern only part of the
proto-cluster, or these proto-clusters have descendants with a
mass much lower than 10'> M. In a recent CO survey around
MRC1138-256 (Jin et al. 2021), a large overdensity of CO emit-
ters was found as part of a filamentary structure with an extent
of about 120 comoving Mpc. The extent of 38 Mpc in physical
scale is too large for one proto-cluster and a structure of this size
should break up to form several virialised units. But within this
filament, MRC1138-256 could indeed be a larger proto-cluster
than mentioned above.

With these tools, we can prepare the strategy for the detec-
tion of proto-clusters in the Euclid Survey and the assessment
of their properties. They could, in particular, provide a good
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orientation for the parameter selection for more sophisticated
detection algorithms than the aperture counts used here.

In Sects. 6 and 7, we reported the moderate detection signif-
icance for proto-clusters, which can be achieved with the Euclid
Survey with the given photometric redshift uncertainties based
on broadband photometry. This will make it difficult, in gen-
eral, to characterise proto-clusters quantitatively without further
follow-up observations. On the other hand, many proto-clusters
will be detectable with sufficient significance (~20) to obtain
a large number of highly likely candidates. Since the proto-
clusters have a large sky-filling factor, as shown in Sect. 10, one
can actually afford a low detection significance threshold. The
following example may best illustrate this. If we study a contigu-
ous sky region of 200 times the area of a typical proto-cluster and
the region contains 100 such systems, corresponding to a filling
factor of 50%, a 20~ detection threshold would lead to an aver-
age false detection rate of 5 contaminating events (since only the
positive deviations of the distribution count), a false detection
rate of 5%, which could be tolerable for statistical studies.

What we have described here is a worst-case scenario using
a very simple detection aperture. Several sophisticated detec-
tion algorithms have been developed for the detection of proto-
clusters in the Euclid Survey. Using a particular aperture and
redshift interval exploits only part of the information given by
the observations. A good detection algorithm will make use of
the complete available information, including galaxies at all rel-
evant radii and the complete probability distributions of the pho-
tometric redshifts with optimal weights. Therefore, we can easily
expect a significant increase in the detection efficiency with the
proper use of dedicated algorithms. One has to be careful, how-
ever, when proto-cluster shapes are assumed in the algorithms
about the possible introduction of selection effects. The exam-
ples of unusual proto-cluster profiles found in Sect. 5 are, in this
respect, interesting test cases.

We can illustrate the unique opportunity offered by Euclid,
also with the following example. We focus on the most massive
proto-clusters with M > 8x10'* M, mentioned above with a typ-
ical sky-filling factor of ~5%. A dedicated algorithm is expected
to improve the detection significance from ~2 to at least ~30-.
This would correspond to false detections with a sky-filling fac-
tor of 0.15%. Thus, we would obtain a ratio of about 34 true to
one false detection. In total, we can expect of the order of 40 000
proto-clusters with a mass limit of M > 8 x 10'* My, in the com-
plete Euclid Wide Survey in the redshift range z = 1.5—4. This
will definitely provide a relatively pure, interesting, and unique
proto-cluster candidate sample.

A sweet spot for the detection of proto-clusters in the con-
sidered redshift range is z ~ 3, where the density contrast turns
out to be the highest. This is an interesting region where Ly-
break galaxy surveys revealed the first proto-clusters. With a
further boost of significance by means of dedicated detection
algorithms, the data should be sufficient to estimate selection
functions and perform population statistics. What will be partic-
ularly interesting is the unprecedentedly large survey volume of
the Euclid Wide Survey, which will turn up the most extreme and
rare objects that have not been observed in the available much
smaller survey areas.

The present study also leads to the question: how can the
contrast above the background be improved? Narrowband sur-
veys will, of course, lead to more precise photometric redshifts
and thus provide an improvement. We can take a look at two
examples. The survey of Yamada et al. (2012) in the SA22 field
at z ~ 3 with a narrowband filter A1 = 77 A provides an accu-
racy of about Az = 0.063. For the COSMOS survey Chiang et al.
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(2014) obtained Az = 0.025 (1 + z). Compared to the numbers
for the Euclid data given above, this is an improvement of about
a factor of two, which is, of course, very helpful, but it does not
improve the situation so much that it allows a precise assess-
ment of the proto-cluster properties. Thus, spectroscopic follow-
up observations will be mandatory for an accurate study of the
most interesting proto-clusters.

11. Summary and conclusions

We have provided an overview of how galaxy proto-clusters in
the redshift range z = 1.5—4 are expected to appear in the Euclid
Wide Survey in order to assist in the preparation of the survey
analysis. The paper reports results on the following studies of
proto-cluster properties.

— A practical estimate of the proto-cluster radius was obtained
on the basis of an analytical model for the evolution of a
homogeneous top-hat overdensity. A comparison with cos-
mological simulations showed that about 80% of the mem-
bers of the descendent cluster (inside rpg) are contained
within this radius with contamination of about 5-10%. We
provided an analytic approximation of the evolution of the
proto-cluster radius with redshift (Sect. 4).

— The mean radial galaxy distribution of proto-clusters can be
well described with a cored profile with a specified inner
and outer logarithmic slope. We provide best-fit formulae for
the mean three-dimensional and projected profiles (Sect. 5).
Individual proto-clusters, however, show a large variety.
About three-quarters of the proto-clusters have a pronounced
dense core. However, proto-clusters with multiple substruc-
ture components can have profiles with a density maximum
at larger radii.

— We investigated which density contrast in the galaxy dis-
tribution proto-clusters can be observed against the galaxy
background. We assumed that photometric data from the
Euclid Survey and broadband ground-based auxiliary data
(at the time of the third data release) are available for this
study to estimate photometric redshifts. We showed that the
small overdensity of proto-clusters, the large redshift depth
that has to be sampled, and the large-scale structure vari-
ance of the background lead to a moderate detection signifi-
cance for simple detections in circular apertures. With a local
background assessment and apertures focused on the inner
regions of the proto-clusters, significances of the order of 20
can be reached. Because proto-clusters are not very rare, use-
ful samples of highly likely proto-cluster candidates can be
obtained with such detection thresholds.

— The cluster richness (i.e. the number of galaxies that are
members of the proto-cluster) was found to be tightly cor-
related with the mass of the descendent cluster. We found
a relation with a logarithmic slope around of 0.9, which
may reflect the decreasing galaxy formation efficiency with
increasing halo mass for the most massive halos. We pro-
vided analytical approximations to the mass-richness rela-
tion as a function of mass and redshift for the GAEA and
MAMBO simulations (Sect. 8).

— The abundance of proto-clusters is determined by their def-
inition of being the precursors of galaxy clusters at redshift
zero with masses, My > 10" M. The matter fraction in
such clusters was, for example, determined in Bohringer et al.
(2017) to be about 4%, and the comoving number density
can be obtained from this result. By knowing the abundance
and sizes of the objects, one can calculate how densely the
proto-clusters fill the sky for a redshift range comparable to
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the uncertainties of the photometric redshifts. We found that

the area that is filled is quite large, and proto-clusters with the

quoted mass limit start to overlap significantly.
There are several efforts in the Euclid Consortium to devise opti-
mised detection algorithms for the search of proto-clusters in
the Euclid Survey. They will use more sophisticated techniques,
which also involve probability distributions for the photometric
galaxy redshifts. This will provide the leverage to improve the
detection efficiency over what has been described here. With the
large sky area explored by Euclid, an enormously large database
of likely proto-clusters and their properties will be provided,
which can bring proto-cluster studies and follow-up observations
to a new level.
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Appendix A: Morphological classification of the
proto-cluster profile

In Section 5, we have explored the variation of proto-cluster pro-
files in the simulation lightcones. Here, we present figures for the
mean profiles for each of the five categories in Figs. A.1 and A.2.
The figures also show the standard deviations of the profiles in
each category. Fig. A.3 shows examples of proto-clusters in cat-
egories 3 to 5. All these proto-clusters show large substructures
or even multi-modality.
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Fig. A.1. Mean profiles of the proto-clusters for two of the five structural
categories defined in the text, where the categories are labelled in the
panels. The shaded regions in the histograms indicate the rms variance
of the density.
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Fig. A.2. Mean profiles of the proto-clusters for the remaining three of
the five structural categories defined in the text, where the categories are
labelled in the panels.
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Fig. A.3. Examples of three proto-clusters for the categories 3 to 5. The
category and the redshift of the proto-clusters is given in the legend of
the Figure.
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