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ABSTRACT

Aims. We present spectroscopic observations of galaxies in 15 survey fields as part of the ESO Distant Cluster Survey (EDisCS). We
determine the redshifts and velocity dispersions of the galaxy clusters located in these fields, and we test for possible substructure in
the clusters.
Methods. We obtained multi-object mask spectroscopy using the FORS2 instrument at the VLT. We reduced the data with par-
ticular attention to the sky subtraction. We implemented the method of Kelson for performing sky subtraction prior to any rebin-
ning/interpolation of the data. From the measured galaxy redshifts, we determine cluster velocity dispersions using the biweight
estimator and test for possible substructure in the clusters using the Dressler-Shectman test.
Results. The method of subtracting the sky prior to any rebinning/interpolation of the data delivers photon-noise-limited results,
whereas the traditional method of subtracting the sky after the data have been rebinned/interpolated results in substantially larger
noise for spectra from tilted slits. Redshifts for individual galaxies are presented and redshifts and velocity dispersions are presented
for 21 galaxy clusters. For the 9 clusters with at least 20 spectroscopically confirmed members, we present the statistical significance
of the presence of substructure obtained from the Dressler-Shectman test, and substructure is detected in two of the clusters.
Conclusions. Together with data from our previous paper, spectroscopy and spectroscopic velocity dispersions are now available for
26 EDisCS clusters with redshifts in the range 0.40−0.96 and velocity dispersions in the range 166 km s−1−1080 km s−1.

Key words. galaxies: clusters: general – galaxies: distances and redshifts – galaxies: evolution

� Based on observations collected at the European Southern
Observatory, Chile, as part of large programme 166.A–0162 (the ESO
Distant Cluster Survey).

�� Full Table 4 is only available in electronic form at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/482/419
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1. Introduction

Galaxy clusters provide important environments for studying
galaxy evolution out to high redshift (e.g. Aragón-Salamanca
et al. 1993). They are detectable at optical wavelengths (e.g.
Abell 1958; Zwicky et al. 1968; Shectman 1985; Gunn et al.
1986; Couch et al. 1991; Postman et al. 1996; Gladders & Yee
2000; Gonzalez et al. 2001; Wilson et al. 2006; Scoville et al.
2007), by the X-ray (e.g. Rosati et al. 1995; Finoguenov et al.
2007, and references therein) and radio (Feretti & Giovannini
2007) emission of their intracluster medium (ICM) and point
sources, and by the scattering of cosmic background radiation
by ICM free electrons via the Sunyaev-Zel’dovich effect (e.g.
Sunyaev & Zeldovich 1970; Carlstrom et al. 2002; Birkinshaw
& Lancaster 2007).

Spectroscopic surveys of cluster galaxies began with work
on Coma and Perseus by Kent & Gunn (1982) and Kent &
Sargent (1983), and progressed to the systematic studies of tens
of local clusters by Dressler & Shectman (1988) and Zabludoff
et al. (1990). Currently, the most comprehensive spectroscopic
catalogues of local galaxy clusters are provided by applying a
variety of selection techniques to large-area surveys, primarily
the Sloan Digital Sky Survey (SDSS) from which the C4 Miller
et al. (2005) and MaxBCG Koester et al. (2007) catalogues are
produced.

Intermediate redshift (z ∼ 0.2−0.7) spectroscopic cluster
surveys arrived with the work of the CNOC (Yee et al. 1996;
Balogh et al. 1997) and MORPHS (Dressler et al. 1999;
Poggianti et al. 1999) collaborations. Further kinematic studies
of individual and small samples of intermediate redshift clusters
include those by Kelson et al. (1997, 2006), Tran et al. (2003),
Bamford et al. (2005), Serote Roos et al. (2005) and Moran et al.
(2005).

At higher redshift (z ∼ 0.7−1.3) surveys have been com-
pleted by Postman et al. (1998, 2001), and a number of indi-
vidual clusters have been studied (e.g. van Dokkum et al. 2000;
Jørgensen et al. 2005, 2006; Tanaka et al. 2006; Demarco et al.
2007; Tran et al. 2007). However, to date our knowledge of clus-
ters beyond z ∼ 0.5 has been generally limited to the highest-
mass systems.

Cluster velocity dispersions provide a measure of cluster
mass (Fisher et al. 1998; Tran et al. 1999; Borgani et al. 1999;
Lubin et al. 2002). The measurement of cluster velocity disper-
sions should be made using statistics insensitive to galaxy red-
shift outliers and the shape of the velocity distribution, e.g. the
biweight scale and gapper estimators proposed by Beers et al.
(1990) (e.g. Halliday et al. 2004). Galaxy clusters may however
have cluster substructure (Dressler & Shectman 1988; Geller &
Beers 1982). Substructure can take many forms (e.g., bimodal-
ity, small clumps, filaments) and its detection constitutes a non-
trivial technical problem. Many statistical tests have been devel-
oped and applied to reasonably large samples of clusters over the
past decades. They all agree with the conclusion that substruc-
ture is an important phenomenon, but often diverge quite sig-
nificantly on the fraction of clusters exhibiting significant sub-
structure. As an example, Dressler & Shectman (1988) adopted
a method to quantify the significance of cluster substructure us-
ing galaxy spectroscopic redshifts and projected sky positions.
The presence of substructure suggests that the galaxy cluster is
still relaxing. This may imply that the cluster velocity dispersion
is a less reliable measure of cluster mass, although our limited
data for 3 clusters with detected substructure and with a mea-
sured lensing mass do not indicate this (Fig. 18).

In this paper we present cluster velocity dispersion measure-
ments and assessment of cluster substructure for 21 galaxy clus-
ters from the ESO Distant Cluster Survey (EDisCS) located in
15 survey fields. Measurements for the 5 remaining clusters lo-
cated in 5 survey fields were presented in Halliday et al. (2004).

EDisCS (White et al. 2005) is a project to study high-
redshift cluster galaxies, as well as coeval field galaxies, in
terms of their sizes, luminosities, morphologies, internal kine-
matics, star formation properties and stellar populations. We
achieve this by obtaining deep multi-band imaging of 20 survey
fields containing clusters at z = 0.4−1 and deep spectroscopy
of ∼100 galaxies per field. The EDisCS fields were chosen to
target galaxy cluster candidates from the Las Campanas Distant
Cluster Survey (LCDCS, Gonzalez et al. 2001). The LCDCS is
a survey of an area of 130 square degrees imaged in a single
wide optical filter using a 1 m telescope in drift-scan mode with
an effective exposure time of 3.2 min. All detected objects are
removed. For a high-redshift cluster this only affects a few of
the brightest galaxies in the cluster; the rest of the galaxies are
not detected individually. High-redshift clusters can then be de-
tected as diffuse light peaks with a typical scale of 10′′, resulting
in a catalogue of 1073 cluster candidates with estimated red-
shifts zest = 0.3−1.0. From this catalogue we selected 30 of the
highest surface-brightness candidate clusters. Using moderately
deep two-band VLT/FORS2 imaging (going 3 mag deeper than
the original LCDCS imaging), 28 of the candidates were found
to show a significant overdensity of red galaxies close to the
LCDCS position (Gonzalez et al. 2002). From these clusters, we
selected 10 clusters at zest ≈ 0.5 (hereafter mid-z) and 10 clus-
ters at zest ≈ 0.8 (hereafter high-z) to constitute the EDisCS
sample. These fields were imaged optically in BVI (mid-z) and
VRI (high-z) with VLT/FORS2 during 14 nights (White et al.
2005), and in the near-infrared (NIR) in K (mid-z) and JK
(high-z) with NTT/SOFI during 20 nights (Aragón-Salamanca
et al., in prep.). Spectroscopy was obtained with VLT/FORS2
during 22 nights (Halliday et al. 2004 and this paper). Follow-up
observations include MPG/ESO 2.2 m/WFI wide field imaging
in VRI of all fields, HST/ACS imaging in F814W of 10 fields
(Desai et al. 2007), Hα narrow-band imaging (Finn et al. 2005),
XMM-Newton/EPIC X-ray observations (Johnson et al. 2006),
and Spitzer IRAC (3−8 µm) and MIPS (24 µm) imaging. The
legacy value of the EDisCS fields has been further increased by
another ESO Large Programme that studies galaxies at redshift
5−6 in 10 of the EDisCS fields, using the EDisCS imaging as
well as new deep VLT/FORS2 z-band imaging and spectroscopy
(cf. Douglas et al. 2007).

The unprecedented novelty of the EDisCS dataset stems
from the range of cluster velocity dispersions and masses cov-
ered by the sample. On the one hand, the survey provides high-
redshift counterparts to the lower velocity dispersion clusters
abundant in the local universe. On the other hand, it probes a
range in cluster masses large enough to allow the study of the
dependency on cluster mass of the processes affecting cluster
galaxy evolution. The scientific exploitation of the rich EDisCS
dataset is ongoing, but it has already produced important re-
sults in this respect. Studies have so far been completed on the
red-sequence galaxies (De Lucia et al. 2004, 2007), the star-
forming galaxies as seen in Hα (Finn et al. 2005) and [OII]
(Poggianti et al. 2006), the cluster velocity dispersions (Halliday
et al. 2004, and this paper), the weak-lensing mass reconstruc-
tion of the clusters (Clowe et al. 2006), the X-ray properties of
the clusters (Johnson et al. 2006), the HST–based visual galaxy
morphologies (Desai et al. 2007), the evolution of the early-type
galaxy fraction (Simard et al. 2007), and the evolution of the
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Table 1. Target selection parameters for the masks with long exposures in the 20 EDisCS fields.

Field zfinal
cl Run Mask numbers zphot, low zphot, high Explanation zP

cl I1,bright I1,faint Filters

Mid-z fields:
1018.8−1211 0.4734 3 05, 06, 07 0.27 0.67 0.47 ± 0.2 0.472 19.5 22 BVIK
1059.2−1253 0.4564 3 05, 06, 07 0.26 0.66 0.46 ± 0.2 0.457 19.6 22 BVIK
1119.3−1129 0.5500 4 09, 10, 11 0.35 0.75 0.55 ± 0.2 0.549 19.9 22 BVI
1202.7−1224 0.4240 4 09, 10, 11 0.22 0.62 0.42 ± 0.2 0.424 19.5 22 BVIK

2 02, 03, 04 0.28 0.68 0.48 ± 0.2 0.54 18.6 22 BVI[J]K1232.5−1250 0.5414
3 05 0.34 0.74 0.54 ± 0.2 0.541 19.7 22 BVI[J]K

1238.5−1144 0.4602 4 09 0.26 0.66 0.46 ± 0.2 0.465 19.2 22 BVI
1301.7−1139 0.4828, 0.3969 4 09, 10, 11 0.20 0.68 0.40−0.2, 0.48 + 0.2 0.485 19.2 22 BVIK
1353.0−1137 0.5882 4 09, 10, 11 0.39 0.79 0.59 ± 0.2 0.577 19.6 22 BVIK
1411.1−1148 0.5195 3 05, 06, 07 0.32 0.72 0.52 ± 0.2 0.520 19.4 22 BVIK
1420.3−1236 0.4962 4 09, 10, 11 0.30 0.70 0.50 ± 0.2 0.497 19.5 22 BVIK
High-z fields:
1037.9−1243 0.5783, 0.4252 3 05, 06, 07, 08 0.38 0.78 0.58 ± 0.2 0.58 20.0 23 VRIJK

2 02, 03, 04 0.5031 0.9031 0.70 ± 0.2 0.55 19.5 23 VRIJK1040.7−1155 0.7043
3 05, 06 0.504 0.904 0.70 ± 0.2 0.704 20.6 23 VRIJK
2 02, 03, 04 0.494 0.894 0.70 ± 0.2 0.69 19.5 23 VRIJK1054.4−1146 0.6972
3 05 0.50 0.90 0.70 ± 0.2 0.697 20.2 23 VRIJK
2 02, 03, 04 0.546 0.946 0.75 ± 0.2 0.75 19.5 23 VRI[J]K1054.7−1245 0.7498
3 05 0.55 0.95 0.75 ± 0.2 0.748 20.4 23 VRI[J]K

1103.7−1245 0.9586, 0.6261, 0.7031 3; 4 05, 06; 09, 10 0.50 0.90 0.70 ± 0.2 0.704 20.2 23 VRIJK
1122.9−1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1138.2−1133 0.4796, 0.4548 3 05, 06, 07, 08 0.28 0.68 0.48 ± 0.2 0.480 19.7 23 VRIJK

2 02, 03, 04 0.597 0.997 0.80 ± 0.2 0.79 19.5 23 VRIJK1216.8−1201 0.7943
3 05 0.60 1.00 0.80 ± 0.2 0.794 20.4 23 VRIJK

1227.9−1138 0.6357, 0.5826 3 05, 06, 07, 08 0.44 0.84 0.64 ± 0.2 0.64 20.4 23 VRIJK
1354.2−1230 0.7620, 0.5952 3 05, 06, 07, 08 0.40 0.96 0.60−0.2, 0.76 + 0.2 0.76 20.3 23 VRIJK

Notes – The 66 masks listed in this table are the masks with long exposures (with the exception of the listed 1238.5−1144 mask, cf. Sect. 2.3).
Each field has between 1 and 5 such masks. The masks are numbered from 01 to 11 as described in Halliday et al. (2004). For reference the
column zfinal

cl lists the spectroscopic cluster redshifts (Halliday et al. 2004 and this paper); these cluster redshifts were determined from all the
obtained spectroscopy and were not as such part of the spectroscopic target selection. Where more than one redshift is listed the order is as
follows: main cluster, secondary cluster “a”, secondary cluster “b” (cf. Sect. 4.2). The “Explanation” column gives the same information as the
zphot, low and zphot, high columns, except for a possible rounding to two decimals. The “Filters” column indicates what photometric data were employed
to calculate the photometric redshifts used in the spectroscopic target selection. Filters in brackets indicate data not employed; these data were
obtained later and used in subsequent studies, e.g. to calculate the final EDisCS photometric redshifts (Pelló et al., in prep.). No data are listed for
the 1122.9−1136 field, since it only has an initial short mask, no long masks, cf. Sect. 2.3.

brightest cluster galaxies (Whiley et al. 2007). Further studies of
the properties of the cluster galaxies and the clusters themselves
will follow.

This paper is organised as follows. Section 2 reports the tar-
get selection and the observations. Section 3 describes the data
reduction using two different methods for the sky subtraction:
sky subtraction performed after (respectively before) any rebin-
ning/interpolation of the data has been done (cf. Kelson 2003).
Section 4 presents the redshift measurements and the redshift
histograms. Section 5 examines the success rate, the failure rate
and potential selection biases. Section 6 describes the determi-
nation of cluster redshifts and velocity dispersions. Section 7
discusses possible cluster substructure. Section 8 discusses the
velocity dispersions for the full sample of EDisCS clusters in
comparison with the weak-lensing measurements and with other
samples. Section 9 provides a summary, and Appendix A com-
pares results from the two sky subtraction methods.

The discussed photometry is based on Vega zero-points un-
less stated otherwise. We assume a cosmology with Ωm = 0.3,
ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.

2. Target selection and observations

The target selection strategy, mask design procedure and obser-
vations for the EDisCS spectroscopy are described in detail in

Halliday et al. (2004). Here we give the main points. We also
provide a table with the target selection parameters (Table 1),
and we discuss the performance of the photometric redshifts
used.

2.1. Target selection strategy

The target selection was based on the available VLT/FORS2 op-
tical photometry (White et al. 2005) and the NTT/SOFI NIR
photometry (Aragón-Salamanca et al., in prep.). The optical data
cover 6.5′ × 6.5′ and are well-matched to the FORS2 spectro-
graph field-of-view. The NIR data cover a somewhat smaller re-
gion of 4.2′ × 6.0′ (mid-z fields) and 4.2′ × 5.4′ (high-z fields).
The photometry was used as input to a modified version of the
photometric redshifts code hyperz1 (Bolzonella et al. 2000), see
also Halliday et al. (2004) and the EDisCS photo-z paper (Pelló
et al., in prep.). A combined photometry and photo-z catalogue
(hereafter photometric catalogue) used for the target selection,
was created for each field prior to each spectroscopic observ-
ing run. The aim of the target selection strategy was to keep
all galaxies at the cluster redshift (brighter than a certain I-band
magnitude), while removing objects that were almost certainly
not galaxies at the cluster redshift. We will see in Sect. 5 that

1 http://webast.ast.obs-mip.fr/hyperz

http://webast.ast.obs-mip.fr/hyperz
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Fig. 1. Performance of the photometric red-
shifts used for the spectroscopic target selection
(not the final ones from Pelló et al., in prep.).
Plotted are the members of the cluster(s) at the
targeted redshift(s) for the given field (21 clus-
ters in 19 fields). For example, if the target se-
lection was zphot = 0.58 ± 0.2 for the given
field (cf. Table 1), then the z = 0.58 cluster in
that field is plotted, but not the z = 0.43 clus-
ter. Four galaxies out of 568 are outside the
plotted y-range. Abbreviated cluster names are
given on the plot. The 5 clusters not plotted are
cl1037a (z = 0.43), cl1103a (z = 0.63), cl1103
(z = 0.96), cl1138a (z = 0.45) and cl1227a
(z = 0.58).

this aim was successfully achieved. The selection criteria are ex-
plained in Halliday et al. (2004). They can be summarised as
follows.

1. The I-band magnitude (not corrected for Galactic extinction)
within a circular aperture of radius 1′′, I1, had to be in the
range [I1,bright, I1,faint], see Table 1. For the initial short masks
(not listed in Table 1) the bright limit was conservatively set
to 18.6 for the mid-z fields and 19.5 for the high-z fields,
which is about 1 mag brighter than the expected magnitude
of the brightest cluster galaxy (BCG) (Aragón-Salamanca
et al. 1998). For subsequent masks, the bright limit was ei-
ther kept or set to 0.2 mag brighter than the identified BCG.

2. (a) The best-fit photometric redshift zphot had to be in the
range [zphot, low, zphot, high] or (b) the χ2-based probability of
the best-fit template placed at the estimated or known cluster
redshift zP

cl had to be greater than 50% (see Table 1). The zphot
interval was set to ±0.2 from the estimated or known clus-
ter redshift. For the long exposures (i.e. those in Table 1),
the cluster redshift was usually known from a preceding
short exposure (cf. Sect. 2.3). For two fields (1301.7−1139
and 1354.2−1230), clusters at two redshifts had been iden-
tified in the initial short exposure, and here the union of
the ±0.2 intervals was used, giving a wider interval, e.g.
0.60−0.2, 0.76+0.2. The ±0.2 limit was designed to be fairly
conservative: the expectation was that the photo-z dispersion
would be 0.1, which would make the selection be ±2σ. The
performance of the used photometric redshifts is discussed
below.

3. The hyperz star-galaxy separation parameters Ngal and N∗,
based on SED fitting minimization, had to have values as
follows:
Ngal = 1 (“the object could be a galaxy”) or
Ngal = 2 (“the object is almost certainly a galaxy”) or
N∗ = 0 (“the object is almost certainly not a star”).
In other words, in the 3 × 3 grid of (Ngal,N∗), the only two
grid points not selected were those at (0, 1) and (0, 2).

4. The FWHM had to be greater than a limit FWHMmin or the
ellipticity ε had to be greater than 0.1, with FWHM and ε
being measured in the I-band image. This requirement was
applied to runs 3 and 4 only. The value of FWHMmin was de-
termined using 20−30 manually-identified stars in the given
field: based on their measured FWHM values, the limit was
calculated as FWHMmin = 〈FWHM〉 + 2σ(FWHM), with

〈FWHM〉 being the seeing of the image and 2σ(FWHM)
amounting to about 0.1′′. The value of FWHMmin was in the
range 0.58−0.85′′ with a typical value of 0.69′′.

Applying these 4 rules to the photometric catalogue, we derived
a target catalogue for the given field and run. Additional con-
straints of geometrical nature were imposed by the mask design,
cf. Sect. 2.2.

Table 1 lists the main target selection parameters for each
field and observing run for the 66 long exposure masks. The ta-
ble does not list the parameters for the short initial masks, since
these masks were used only to determine a good guess of the
cluster redshift; this observing strategy is described in Sect. 2.3.
For reference the table also lists the spectroscopic cluster red-
shift(s) for the given field derived after all the spectroscopy had
been completed. Most fields contain a single main cluster, but a
few fields contain one or two secondary clusters in addition to
the main cluster; this is discussed in Sect. 4.2.

Having obtained all of the spectroscopy, we can check how
the photometric redshifts used in the spectroscopic target selec-
tion performed. In Fig. 1 we plot ∆z ≡ zphot − zspec vs. zspec for
members of the clusters at the targeted redshifts. The vast ma-
jority of the plotted galaxies were selected using rules 1−4 (the
exception being serendipitously-observed galaxies; here we have
imposed the same magnitude cuts as in rule 1). This implies that
Fig. 1 provides a good indication of the photo-z performance for
∆z in the range ±0.2. It does not give an unbiased indication of
the fraction of “catastrophic” photo-z failures (|∆z| > 0.2); how-
ever, that is derived in Sect. 5.2, where the target selection failure
rate is found to be about 3%. It is seen from Fig. 1 that the dis-
persion of ∆z for the given cluster is quite small, namely in the
range 0.03−0.10 (with a typical value 0.06) with the largest value
being for cl1138 which at z = 0.48 would need B-band data to
achieve a better accuracy. The quoted dispersions are computed
as a robust (biweight) estimate. The median value of ∆z differs
somewhat from zero (range −0.11 to +0.07). This is probably
due to minor problems in the photometry used at the time: im-
perfect photometric zero-points and the lack of seeing-matched
photometry. (These problems have been dealt with in the final
EDisCS photometric redshifts, Pelló et al., in prep.) When all
the clusters are considered together, the dispersion of ∆z is 0.08
and the median value is −0.02.

We can also check the χ2-based probabilities of the best-
fit template placed at the cluster redshift used in branch (b) of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079148&pdf_id=1
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rule 2. For the photo-z catalogues used in the spectroscopic target
selection these probabilities are often too low due to imperfect
photometric zero points and the lack of seeing-matched pho-
tometry. However, since rule 2 has a logical or between branch
(a) and (b), and since branch (a) in itself is very good at se-
lecting cluster members, little harm is done by imperfections
in branch (b). Furthermore, the inclusion of branch (b) only
increased the number of objects in the target catalogues by
about 10%, and it made the target selection failure rate be 3%
(Sect. 5.2) instead of 5%.

We present now some representative statistics about the
number of targets. If we were to apply only the magnitude cuts
(i.e. rule 1), the average number of objects per field would be
470 (range 160−860). If we apply the full target selection (i.e.
rules 1−4), the average is 260 (range 100−440). The full target
selection thus on average rejects almost 50% of the objects that
meet the magnitude cuts. The price for this substantial efficiency
increase turns out to be missing about 3% of the cluster members
(i.e. the failure rate, Sect. 5.2).

To the target catalogues, we added 3 galaxies that did not
meet rule 2, since these galaxies had been observed in the ini-
tial short mask, and had been found to have redshifts that were
close to the estimated cluster redshift. Two of these galaxies
were found to be cluster members, and these are counted when
computing the failure rate for the target selection for the 66 long
masks (Sect. 5.2).

2.2. Automatic creation of the masks

We developed a programme (Poirier 2004) to design the spec-
troscopic slit masks (called “MXU masks” after the Mask
eXchange Unit in the FORS2 spectrograph). A fuller description
of how the programme works is found in Halliday et al. (2004);
the main points are as follows. The programme starts by plac-
ing a slit on the BCG unless it has already been observed in a
previous long mask. Slits (10′′ long) are then placed on objects
above and below the BCG. At a given location along the y-axis
(north-south axis), the brightest object from the target catalogue
is chosen (avoiding targets that have already been observed in
a previous long mask). Once a slit has been placed at a given
location along the y-axis, no other slits can be placed at that lo-
cation (i.e. to the left and right of that slit), since that would cause
overlapping spectra. Objects taken from the target catalogue are
noted as having targeting flag 1 (cf. Table 2). If no objects from
the target catalogue are available at a given location, an object
not from the target catalogue is chosen (still imposing a faint
magnitude cut in I1 of 22 and 23 for mid-z and high-z fields),
possibly using a somewhat shorter slit (6−8′′). These objects ac-
quire a targeting flag 2. Additionally, 2−3 short slits (5′′) are
placed on manually-identified stars. These are used to aid the ac-
quisition and to enable the seeing in the spectral data of a given
mask to be accurately measured. These objects are given a tar-
geting flag 4. (All the 108 targeting flag 4 objects observed in the
66 long masks were indeed found to be stars spectroscopically.)
Some slits happen to go directly or partially through an object
that is not the target. These serendipitously-observed objects are
noted as having targeting flag 3.

The achieved wavelength range of the spectra depends on
the x-location of the slit in the mask. For example, for the runs 3
and 4 setup, a slit at the left, centre and right of the mask would
cover an observed-frame wavelength range of approximately
6200−9600 Å, 5200−8500 Å and 4150−7400 Å, respectively. If
possible, slits were only placed on objects that were in the

Table 2. Targeting flag values.

Value Explanation
1 Targeted as a candidate cluster member
2 Targeted as a field galaxy (filling object)
3 Serendipitous (not targeted)
4 Targeted as a star to aid acquisition and to measure seeing

x–interval that would produce a spectrum that contained the rest-
frame wavelength range 3670−4150 Å (covering [OII] and Hδ)
for the assumed cluster redshift. The width of the x-interval de-
pended on the cluster redshift. Slits on stars (targeting flag 4 ob-
jects) were not subjected to this restriction.

The masks were inspected, and occasionally objects that had
been assigned a slit were removed from the target catalogue and
the mask redesigned. This happened in two cases. One was when
an object from the photometric catalogue clearly appeared to
consist of two distinct physical objects seen partially in projec-
tion, but where SExtractor (Bertin & Arnouts 1996) had not been
able to deblend them. This seems like a wise choice: in such
a situation the photometric redshift (calculated from the com-
bined light of the two physical objects) is meaningless, and it is
also not clear on which of the two physical objects to place the
slit. The second case was when the object appeared so bright
or big that it was perceived to be a foreground field galaxy,
which was the case for 10 objects. In retrospect this seems less
advisable: 5 of these objects were observed anyway to fill the
mask (i.e. as targeting flag 2 objects), and 2 of them did in fact
turn out to be cluster members (specifically of cl1059.2−1253 at
z = 0.46). The remaining 3 objects were foreground field galax-
ies, at z = 0.07, 0.35 and 0.46.

The slits were aligned with the major axis of the targeted
object if that involved tilting the slit by no more than ±45◦. (In
run 2, this was only performed for objects that the photomet-
ric redshift code identified as late-type galaxies.) Occasionally,
when the programme assigned an untilted slit to a target, we
manually tilted the slit either to be able to observe a second ob-
ject “serendipitously” in the slit, or to avoid/reduce signal from
very bright, nearby objects.

All slits were 1′′ wide in the dispersion direction, which
means that the spectral resolution for all slits, tilted or not, is
practically the same, cf. Sect. 3.5.

2.3. Observations

Spectroscopic observations were completed using the FORS2
spectrograph2 (cf. Appenzeller et al. 1998) on the VLT, dur-
ing 4 observing runs from 2002 to 2004, spanning 25 nights
(22 nights were usable, while 3 nights were lost due to bad
weather and technical problems); see Table 1 in Halliday et al.
(2004). The same high-efficiency grism was used in all runs
(grism 600RI+19, λcentral = 6780 Å, resolution FWHM≈ 6 Å),
but the detector system changed between runs 2 and 3, see
Table 2 in Halliday et al. (2004). A total of 86 masks were ob-
served, with 1−6 masks per field; see Table 3 in Halliday et al.
(2004), which also lists the exposure times. The typical observ-
ing strategy was for a given field to have an initial “short mask”
observed in runs 1 or 2, with a total exposure time of typi-
cally 0.5−1 h. Based on the measured redshifts, the confirmed
field galaxies and stars were removed from the target catalogue.
The objects for which no (secure) redshift could be determined

2 http://www.eso.org/instruments/fors

http://www.eso.org/instruments/fors
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Fig. 2. Flowchart for the science frames. The upper branch is for traditional sky subtraction: a) “raw” frame; b) after removal of spatial curvature;
c) after flat fielding; d) after cutting-out the individual spectra; e) after application of the 2D wavelength calibration; f) after sky subtraction.
The lower branch is for the improved sky subtraction: a) “raw” frame; g) after flat fielding; h) after sky subtraction; i) after removal of spatial
curvature; j) after cutting-out the individual spectra; k) after application of the 2D wavelength calibration. See text for details. We note that the
figure is schematic: it is not to scale, and only 3 spectra per mask (instead of ∼30) and 1 skyline per spectrum (instead of >100) are shown.

were usually kept in the target catalogue. The confirmed clus-
ter galaxies were given priority so that they almost certainly were
included (repeated) in the first “long mask” of that field (typical
total exposure time 1−4 h). For 18 of the 20 EDisCS fields, there
are 3−4 (or even 5) long masks per field. For the 1122.9−1136
field, no long masks were observed because the initial short mask
did not show any convincing cluster (cf. the redshift histogram
in Fig. 10). For the 1238.5−1144 field, an initial short mask plus
a subsequent 20 min mask from run 4 is all that was observed
(this field had low priority due to the lack of NIR imaging). The
66 masks listed in the target selection parameter table (Table 1)
are the 65 truly long masks plus the 20 min 1238.5−1144 mask.
The published redshifts (Halliday et al. 2004 and this paper) are
practically all from these 66 masks – the data from the 20 ini-
tial short masks would only have added a few field galaxies and
stars. Data for 5 fields (observed run 2 [mainly] and run 3) were
published in Halliday et al. (2004), while data for 14 fields (ob-
served in runs 3 and 4) are published in this paper. No redshifts
are published for the 1122.9−1136 field, but the few redshifts
from the initial short mask are shown in the redshift histogram
in Fig. 10.

The 86 masks were exposed for a total of 183 h (14 h for
the 20 initial short masks and 169 h for the 66 subsequent long
masks). Over the 22 usable nights, this amounts to 8.3 h of net
exposure per night, showing the high efficiency of visitor mode
for this type of observations.

In addition to the science observations, various night and day
time calibration frames were obtained, see Halliday et al. (2004).

3. Data reduction

This paper describes the data reduction of the runs 3 and 4 data,
which amounts to 51 of the 66 long masks listed in Table 1. The
reduction was performed using both traditional sky subtraction
(Sect. 3.1), and improved sky subtraction (Sect. 3.2). We adopt
the names “traditional” and “improved” sky subtraction for sim-
plicity; more descriptive names would be sky subtraction per-
formed after (respectively before) any rebinning/interpolation of
the data has been done.

We note that redshifts based on the traditional reduction for
5 of these 51 masks were included in Halliday et al. (2004). The
improved reduction that we have now completed, has no effect
on the measurement of redshifts.

3.1. Reduction using traditional sky subtraction

The procedure for the reduction using traditional sky subtrac-
tion is described in Halliday et al. (2004), and was devel-
oped for previous FORS2 MXU work (Milvang-Jensen 2003;
Milvang-Jensen et al. 2003). A summary of the procedure is pro-
vided below, and a flowchart for the science frames is shown in
the upper branch of Fig. 2.

For a given mask 3−8 individual science frames were usu-
ally available. These frames were bias-subtracted and then com-
bined (averaged). At the same time, signal from cosmic-ray hits
was removed (cf. Milvang-Jensen 2003; Halliday et al. 2004).
Due to the good stability of FORS2, the frame-to-frame shifts
in the position of skylines and object continua were so small
that the frames could be combined without applying any shifts
in x or y. This stage is schematically shown in Fig. 2a. Two fea-
tures should be noted: (1) The spectra in the upper part of the
frame curve like a U and the spectra in the lower part of the
frame curve like an upside-down U; this is the spatial curva-
ture or S-distortion. (2) The skylines and the spectral features, in
general, are often tilted, because ∼50% of the slits in these MXU
masks are tilted to be aligned with the major axes of the galaxies
(done if the required slit angle was within ±45◦).

The spatial curvature (S-distortion) was traced from the
edges of the ∼30 individual spectra in the flat field frames,
and removed from the science frames by an interpolation in the
y-direction (Fig. 2b). The science frames were then flat-fielded
(Fig. 2c) and cut-up into the individual spectra (Fig. 2d). The
2D wavelength calibration for each spectrum was established us-
ing an arc frame and applied to the science frames using an inter-
polation in the x-direction (Fig. 2e); we note that the skylines are
no longer tilted. Each 2D spectrum now has xr on the abscissa
and yt on the ordinate. The xr coordinate is linearly related to

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079148&pdf_id=2
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Fig. 3. Illustration of the irregular grid. Panels a) and b) show regular grids (the type of images usually used in astronomy), i.e. with the data points
located at integer-valued coordinate positions. Panel c) shows an irregular grid, i.e. with the data points located at real-valued coordinate positions.
The different panels show: a) Part of a “raw” frame centered on a bright skyline (no galaxy continuum is present in the shown section), i.e. data
that have not been interpolated (rebinned), cf. Fig. 2a. The image is pixelised in (x, y). b) The same data after interpolation in y to remove spatial
curvature and in x to apply the wavelength calibration, cf. Fig. 2e. The image is pixelised in (xr, yt). c) The exact data values from panel a), i.e.
uninterpolated values, but shown as an irregular grid in (xr, yt) space. d) Just a different visualisation of the irregular grid in panel c), corresponding
to painting the spectrum in panel a) on a piece of rubber and stretching it to have axes corresponding to (xr, yt) space. e) The values from panel b)
plotted versus xr. We note the scatter caused by the interpolation of the sharp edges of the skyline. f) The values from panel c) plotted versus xr.
We note the very low scatter.

the wavelength λ in Å and the yt coordinate is linearly related
to the spatial position along the slit in arcsec (in the notation of
Kelson 2003). We note that our wavelengths are on the air wave-
length system (as opposed to the vacuum wavelength system), as
is customary for optical work. The sky background could then be
fitted and subtracted. The fit was made using pixels in manually-
determined sky windows (intervals in yt) that were free from
galaxy signal. Finally 1D spectra were extracted from the sky-
subtracted 2D spectra. The reduction was performed mainly us-
ing IRAF3.

3.2. Reduction using improved sky subtraction

The traditional sky subtraction does not work well for spectra
produced by tilted slits: strong, systematic residuals are evident
where skylines have been subtracted. To remedy this situation,
we have implemented a much-improved method for the sky sub-
traction. The method is described in detail in Kelson (2003).
We will follow the notation of Kelson. We have implemented
the method from scratch using a combination of IRAF (with
Tables4) and IDL.

Figure 3 illustrates a concept central to the method. Panel (a)
shows part of a “raw” frame, i.e. data that have not been interpo-
lated (or rebinned; we will use these terms interchangeably), and
where the skylines have not been subtracted. The image is pix-
elised in (x, y), i.e. the image is a regular grid in (x, y). Panel (b)

3 IRAF is distributed by the National Optical Astronomy
Observatories, which are operated by the Association of Universities
for Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.
4 Tables is a product of the Space Telescope Science Institute, which
is operated by AURA for NASA.

shows what happens in the reduction with traditional sky sub-
traction: the data, with the skylines still present, have been
interpolated in y to remove spatial curvature, and in x to ap-
ply the wavelength calibration. The image is pixelised in (xr, yt).
These two interpolations are based on analytical mappings
(polynomials or spline functions). It is seen that the interpola-
tion of the sharp edges of the skylines has imprinted an aliasing
pattern, which prevents a good fit and subsequent subtraction of
the skylines. (This aliasing pattern is much more evident once
the sky has been subtracted, as will be shown in Fig. 4.) We
note that it is the insufficient sampling of the edges of the sky-
lines that is the problem, when performing the sky subtraction
in the traditional way (Kelson 2003), not necessarily an under-
sampling of the skylines. Our data are reasonably well sampled,
with the spectral FWHM being sampled by 4 pixels. Panel (c)
shows the irregular grid that is central to the improved sky sub-
traction method. The panel shows the exact uninterpolated data
values from panel (a) but as an irregular grid in (xr, yt) space.
To turn the regular grid in (x, y) (i.e. panel a) into the irregular
grid in (xr, yt) (i.e. panel c), one simply has to use the above-
mentioned analytical mappings to compute the correspondence
between integer-valued coordinates (x, y) and real-valued coor-
dinates (xr, yt). Panel (d) is just a different visualisation of the
irregular grid in panel (c), corresponding to painting the spec-
trum in panel (a) on a piece of rubber and stretching it to have
axes corresponding to (xr, yt) space. To construct this visualisa-
tion, one simply has to compute the real-valued (xr, yt) coordi-
nates of the corners of each pixel in the original image (panel a).
Panel (e) shows the values from panel (b) plotted versus xr. The
before-mentioned aliasing pattern can here be seen as a scatter
at a given xr, at the location of the edges of the skyline. Panel (f)
shows the values from panel (c) plotted versus xr, and here there
is very little scatter.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079148&pdf_id=3
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Fig. 4. Examples of the results from the improved and the traditional sky subtraction. For each example, we show 4 panels, e.g. a)−d). The panels
show: a) “Raw” data (i.e. combined but uninterpolated frame). b) Sky-subtracted data (improved method), still uninterpolated. c) Sky-subtracted
data (improved method), interpolated (rectified). d) Sky-subtracted data (traditional method), interpolated (rectified). An identical greyscale is used
in panels b)−d). We note that all the panels show regular grids. The first two panels (e.g. a) and b)) are pixelised in (x, y), and the last two panels
(e.g. c) and d)) are pixelised in (xr, yt) and are thus rectified: wavelength is on the abscissa and spatial position is on the ordinate. The greyscale
varies from example to example. Examples 1−3 show spectra from tilted slits (slit angles 26.6◦, −3.4◦ and −40.0◦, resp.). Examples 4−5 show
spectra from untilted slits, but in example 5 the skyline is nevertheless slightly tilted. For spectra with tilted skylines the improved sky subtraction
method gives better results than the traditional one. We note that the tilt of the emission lines, seen in the rectified frames in examples 1−3, is
due to the rotation of the galaxies. Example 2 shows the [OII] emission line of a z = 0.7 galaxy, and the corresponding 1D spectrum is shown in
Figs. 5a, b.

The essence of the improved sky subtraction method is that
the uninterpolated values (for pixels that only contain sky and
not object signal) are fitted in the irregular grid in (xr, yt). The fit
is subsequently evaluated for the (xr, yt) positions corresponding
to all pixel positions in (x, y), i.e. also those containing object
signal, and subtracted from the uninterpolated data.

Our implementation of the improved sky subtraction con-
sists of two parts. First, the irregular grid is constructed. In
our IRAF-based reduction with traditional sky subtraction,
the analytical mappings representing the spatial curvature and
the wavelength calibration were established using the tasks
identify, reidentify and fitcoords and applied using the
task transform, creating an interpolated image. To calculate the
coordinates of the irregular grid, these mappings need instead
to be evaluated at each integer-valued (x, y) coordinate to deter-
mine the corresponding real-valued (xr, yt) coordinate. This task
is performed using the task fceval5. Second, the irregular grid

5 The task fceval was kindly written for us by Frank Valdes from the
IRAF project. The task is now included in the IRAF distribution.

in (xr, yt) of uninterpolated values are fitted (only for data points
located in the manually-determined sky windows, which are
intervals in yt). As fitting-functions, we use cubic splines in xr
and linear polynomials in yt (similar to the approach taken by
Kelson 2003). The node (or breakpoint) spacing of the cubic
splines in xr is denoted ∆xr. Kelson (2003) was able to obtain a
good fit using ∆xr = 1, but we find that this value usually leaves
systematic residuals and that ∆xr in the range 0.5−0.6 typically
is required to achieve a good fit6. A node spacing ∆xr below
one pixel (say ∆xr = 0.5), is not a problem: in many cases the
distance between the data points in xr is much smaller than this

6 When we discuss the numerical values of ∆xr, we are referring to the
situation where the size in Å of the pixels in x and in xr is approximately
the same. This is a natural choice, but not the only one possible. The xr

coordinate in some sense is arbitrary: it is only defined as soon as the
2D wavelength calibration (the slightly nonlinear mapping (x, yt) 
→ λ)
is used to construct an interpolated image pixelised in (xr, yt), where xr

is linearly-related to λ, as λ = a + bxr.
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(cf. the example in Fig. 3f), and where there are cases of too
few data points being located between two adjacent nodes, the
software will delete one of the nodes. In most cases a constant
function in yt could have been used instead of a linear one; cf. the
example in Fig. 3f where any variation in sky level with yt would
have caused the points to scatter, but occasionally a linear func-
tion is required to obtain a good fit. The data points are weighted
by the inverse of the expected variance. The fitting is done iter-
atively, and sigma-clipping is applied. We performed the fitting
in IDL using modified versions of B-spline procedures written
by Scott Burles and David Schlegel, procedures which are part
of the idlutils library7.

In terms of the flowchart for the science frames (the lower
branch in Fig. 2), the reduction proceeds as follows. The starting
point is the combined but uninterpolated frame (Fig. 2a). The
data are flat-fielded (Fig. 2g), cf. below. The sky is fitted and
subtracted as described above (Fig. 2h). The spatial curvature is
removed by means of an interpolation in y (Fig. 2i). The individ-
ual spectra are cut-out (Fig. 2j). The 2D wavelength calibration
is applied by means of an interpolation in x (Fig. 2k), result-
ing in rectified 2D spectra (i.e. pixelised in (xr, yt)) that are sky-
subtracted, and with almost no systematic residuals where the
skylines have been subtracted. Finally 1D spectra are extracted.
We note that all the frames shown in the flowchart are regular
grids (normal images). The irregular grid used in fitting the sky,
i.e. when going from Figs. 2g to 2h, is not shown.

As just described, the data are flat-fielded before the sky is
fitted, which allows a better fit to be achieved. This in turn im-
plies that an uninterpolated flat field needs to be constructed. The
flat field corrects for pixel-to-pixel variations in sensitivity and
for the slit profile, i.e. possible variations in light transmission
along the slits, e.g. due to the slitwidth not being exactly con-
stant along the slit. The flat field has a level of approximately
unity, i.e. there is no variation with wavelength, since the flat
field is intended to preserve the counts. This flat field is con-
structed from the bias-subtracted screen flats (similar to “dome
flats”). The wavelength dependence in the screen flats (due to
the spectral energy distribution of the used lamp and to the spec-
tral response of the grism, CCD, etc.) is fitted using the same
software that is used to fit the sky background, with a large node
spacing of ∆xr = 50 in xr to fit the smooth spectral features in
the screen flats, and with constants rather than linear functions
in yt so that the slit profile is not altered. The screen flats are then
divided by the fit, creating the desired flat field.

3.3. Comparison of the performance of the two sky
subtraction methods

Qualitatively, for spectra produced by tilted slits, the improved
sky subtraction method is almost always superior to the tradi-
tional one. For spectra originating from untilted slits, the two
methods provide similar results in most cases. Figure 4 shows
5 examples of the results using the two sky subtraction meth-
ods. Panel (a) shows the “raw” spectrum, which has not been re-
binned and in which the sky background is still present. Panel (b)
shows the immediate result from the improved sky subtraction:
a frame that has still not been rebinned, but in which the sky
background has been subtracted. Panel (c) shows the rebinned
version of panel (b): the spectrum is now rectified and pixelised

7 The idlutils library is developed by Doug Finkbeiner, Scott
Burles, David Schlegel, Michael Blanton, David Hogg and others.
See the Princeton/MIT SDSS Spectroscopy Home Page at http://
spectro.princeton.edu/

Fig. 5. Comparison of the traditional and the improved sky subtraction
method for two typical, one-dimensional cluster spectra extracted from
tilted slits (slit angles of −3.4◦ and −40.0◦, resp.). The spectra are flux-
calibrated and telluric-absorption corrected (see Sect. 3.4). Fluxes are
given in units of 10−18 erg cm−2 s−1 Å−1. For objects 1 and 2 the sig-
nificant improvement of [OII] and the G-band, resp., is indicated. The
[OII] doublet of object 1 is also shown in Fig. 4 as example 2. The
spectra are shown at their native pixel size of 1.6 Å (spectral resolution
is 6 Å FWHM) without any smoothing. In order to mark the positions
of strong skylines, panel e) shows a representative sky spectrum.

in (xr, yt). Panel (d) shows the sky-subtracted spectrum from
the traditional method (this spectrum is also rectified). The two
methods can be directly compared in the two rightmost panels
in the figure, e.g. (c) and (d). Examples 1−3 show spectra from
tilted slits, and here the traditional method leaves an aliasing pat-
tern (i.e. a systematic error), which the improved method does
not. Examples 4−5 show spectra from untilted slits. In exam-
ple 4, the results from the two methods are similar. In example 5,
the skyline is slightly tilted (despite the slit not being tilted), and
here the traditional method again leaves an aliasing pattern in the
sky-subtracted spectrum.

For tilted slits, in Fig. 5 we compare one-dimensional spectra
produced by the traditional sky subtraction method, with spectra
created using improved sky subtraction. The residuals of the sky-
lines are significantly reduced for the two typical cluster galax-
ies shown. For spectral lines of the object falling into the range
of strong skylines, this can mean a striking improvement as in-
dicated for [OII] in the case of object 1 (panels a, b) and the

http://spectro.princeton.edu/
http://spectro.princeton.edu/
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G-band in the case of object 2 (panels c, d). The [OII] doublet of
object 1 is also shown in the 2D figure (Fig. 4, see example 2).

A quantitative comparison of the results from the two sky
subtraction methods is carried out in Appendix A. The main
conclusion is that the noise in the improved sky subtraction is
very close to the noise floor set by photon noise and read-out
noise, whereas the noise in the traditional sky subtraction over-
all is larger than this (e.g. Fig. A.1). This is particularly the case
for tilted slits. The difference between the two methods is found
where the gradient in the sky background is large, i.e. at the
edges of the skylines (Fig. A.3, cf. Kelson 2003). For our data,
the difference in noise can reach a factor of 10. The difference in-
creases with the total number of collected sky counts, indicating
that the longer the total exposure time is, the more of a prob-
lem the excess noise in the traditional sky subtraction becomes
(Fig. A.4).

It should be noted that we have used linear interpolations
to perform the rebinning in y and x. We have also tested us-
ing higher-order interpolations. This makes the aliasing pattern
in the traditional sky subtraction somewhat less strong, but the
problem is not removed. This indicates that not even a higher-
order interpolation can recover the detailed intrinsic shape of the
skylines, even though the skylines are not undersampled as such
(FWHM≈ 4 pixels). The improved sky subtraction, on the other
hand, removes the problem by fitting and subtracting the sky-
lines before any interpolation of the data is done.

3.4. Flux calibration and telluric absorption correction

Spectrophotometric standard stars chosen from the ESO list8

were observed to be able to flux-calibrate the data, and hot stars
(specifically stars with spectral types from O9 to B3, and with
magnitude V = 9−10) chosen from the Hipparcos catalogue
(ESA 1997)9 were observed to be able to correct the data for tel-
luric absorption. The star spectra were reduced using standard
methods implemented in the long-slit data reduction package
ispec2d, which is described in Moustakas & Kennicutt (2006).

The wavelength range of the individual MXU spectra de-
pends on the x-position of the given slit in the MXU mask (cf.
Sect. 2.2). To be able to flux-calibrate the full spectral range of
all the MXU spectra, we observed spectrophotometric standard
stars through slits located at 3 positions: at the far left, at the
centre and at the far right. The two extreme positions were cho-
sen to bracket the positions that can be accommodated by the
MXU masks. The left, centre and right slits (of width 5′′) were
created using the movable MOS arms of FORS2. When the 3
wavelength-calibrated spectra (i.e. left, centre and right), in units
of ADU per second per spectral pixel, of a given star are plot-
ted together, see Fig. 6a, one problem is immediately clear: the
3 spectra do not agree in the regions in wavelength where the
spectra overlap. The disagreement is not just in overall level, but
in the shape of the spectra. This means that there is no univer-
sal (i.e. valid for all slit positions) function that translates from
ADU per second per spectral pixel to physical flux units, e.g.
erg cm−2 s−1 Å−1. We attribute this to the grism having a spectral
response that depends on the position (angle) within the field of
view. We use the same solution to this problem as in Halliday
et al. (2004). The spectral response of the grism is recorded in
all spectra, including in the screen flat spectra (here we are re-
ferring to screen flat spectra in which the variation with wave-
length has not been taken out, see Fig. 6b and below). We divide

8 http://www.eso.org/observing/standards/spectra/
9 http://cadcwww.dao.nrc.ca/astrocat/hipparcos/

Fig. 6. Illustration of the method used to create a flux calibration which
is valid for all slit positions. Panel a) shows 3 spectra of the same star
(LTT7379), obtained through slits placed at the extreme right (blue),
the centre (green) and the extreme left (red). Panel b) shows screen flat
spectra taken at the same 3 slit positions. The spectral shape has been
left untouched, and only the level has been normalised by dividing all
3 spectra by the same constant (cf. the dotted lines; see also the text).
Panel c) shows the star spectra (from panel a)) divided by the screen
flats (from panel b)), i.e. the panel shows the star SED divided by the
screen flat lamp SED, a ratio that is used as a tool – the screen flat lamp
SED cancels out at the end of the flux calibration procedure. Panel d)
shows the 3 “spectra” from panel c) merged.

both the standard star spectra and the MXU science spectra by
their respective screen flats. After that, the left, centre and right
standard star spectra agree rather well (Fig. 6c). The 3 spectra
can be merged (Fig. 6d), and a sensitivity function can be con-
structed and then applied to the MXU science spectra that have
also been divided by their screen flats, creating flux-calibrated
spectra. This method assumes that all screen flats are made using
the same lamp, since otherwise the spectral energy distribution
(SED) of the screen flat lamp would not cancel out. The screen
flats used in the flux calibration only had their overall level nor-
malised: the 3 standard star screen flats (left, centre, right) were
normalised by a single number, namely the level in the cen-
tre spectrum at 6780 Å (the central wavelength of the grism;
cf. Fig. 6b), and the ∼30 MXU screen flats from a given mask
were normalised by a single number, namely the level in a spec-
trum from a slit near the centre of the field-of-view at 6780 Å. It
should be noted that Fig. 6 is from run 3, where the agreement
between the 3 spectra is very good (cf. Fig. 6c). For run 4 the
agreement is less good: the spectra are offset in level by ±15%
min-max. We speculate that this is due to a different lamp setup
that does not illuminate the 3 slit positions evenly when creating
the screen flats. Since we scale the 3 spectra before we merge
them (i.e. when going from Fig. 6c to 6d), no jumps are intro-
duced into the merged spectrum, so the relative flux calibration
within a given MXU spectrum is unaffected.

It turns out that 2nd order contamination redwards of 8000 Å
is an issue for the flux calibration, but not for the galaxy spec-
tra themselves. From the theory of optics, it is known that the
different spectral orders of a grism overlap. This implies that

http://www.eso.org/observing/standards/spectra/
http://cadcwww.dao.nrc.ca/astrocat/hipparcos/
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079148&pdf_id=6
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the grism transmits light at wavelength λ1 through the 1st or-
der in the same direction as light at wavelength λ2 through the
2nd order. For example, light at λ1 = 7000, 8000 and 9000 Å
could be contaminated by light at λ2 ≈ 3700, 4150 and 4600 Å,
respectively. This contamination can be prevented by using a fil-
ter that blocks light below a certain wavelength λblock. In the
above example, λblock = 4600 Å would prevent 2nd order con-
tamination until λ1 = 9000 Å, but it would also prevent 1st order
observations below λ1 = 4600 Å. When the spectral coverage is
as large as in our case (4150−9600 Å when all MXU slit posi-
tions are considered, Sect. 2.2), the choice of λblock is necessar-
ily a compromise between preventing 2nd order contamination
in the red and allowing observations in the blue. We used the
order-blocking filter GG435, which is the standard filter to use
with grism 600RI. This is an edge filter with a transition around
4350 Å. The listed transmissions are 0.07% at 4100 Å, 3% at
4200 Å and 95% at 4500 Å. Our particular grism also acts as a
cross disperser (T. Szeifert, priv. comm.), making the 2nd order
spectrum be located 3−4 px (corresponding to 0.75−1′′) above
the 1st order spectrum. This makes it easy to identify the 2nd or-
der spectrum, where present, in the 2D spectra. Figure 7a shows
part of a raw MXU arc frame. A large number of arc lines are
seen in the 1st order spectrum, and two lines are seen in the 2nd
order spectrum, displaced upwards by 4 px. Based on three such
2nd order arc lines, a linear fit provides the relation

λ1 = 2.0936λ2 − 691.1 Å, (1)

not unlike relations derived for other grisms (e.g. Szokoly et al.
2004; Stanishev 2007). We only use Eq. (1) to understand from
what wavelength a potential 2nd order spectrum would originate.
We note that λ1 = 8000 Å corresponds to λ2 = 4150 Å, which is
just where the order-blocking filter starts to transmit.

Figure 7 also shows four 2D spectra covering the wavelength
range λ1 = 9200−9270 Å, which is in the far red (only 8% of the
galaxy spectra go this red). If a 2nd order spectrum is present in
the figure, it will come from λ2 ≈ 4720−4760 Å (cf. Eq. (1)).
Panel (b) shows a somewhat blue star [(B−V) = 0.53, (V − I) =
0.81] observed in one of the MXU masks. A fainter 2nd or-
der spectrum located 4 px above the 1st order spectrum is seen.
Panel (c) shows an emission-line galaxy at z = 0.5. No 2nd order
spectrum is seen, presumably due to the redder observed-frame
colours. This galaxy has (V − I) = 2.09, but a more relevant
colour would be one that compared 4700 Å to 9200 Å. We note
that for galaxies at z > 0.2 the potential 2nd order contamina-
tion comes from below the 4000 Å break in the rest-frame of
the galaxy, even at the reddest observed wavelengths (9600 Å).
Panel (d) shows a very blue standard star [(B − V) = 0.07], and
here the 2nd order spectrum is dominant. The spacing between
the two spectral orders is 3 pixels for the MOS spectra, so even
in good seeing the two orders overlap. Panel (e) shows the less
blue G0 standard star LTT7379 [(B − V) = 0.62], which we
used to establish the flux calibration. Here a modest 2nd order
contamination is present. Figure 7 illustrates two points: (1) A
modest 2nd order contamination is found in the used standard
star spectra. (2) No significant 2nd order contamination is seen
in the galaxy spectra. Point (2) is shown quantitatively below
using colours synthesised from the spectra.

In run 3 we observed 7 different standard stars, and in run 4
we observed 2 different standard stars. Typically, one star was
observed at the start of the night and another one at the end of
the night. There were no indications of night-to-night variations,
so for each star all the observations were combined and a sen-
sitivity function was derived. The sensitivity functions for the

Fig. 7. Illustration of 2nd order contamination or lack thereof. a) Part
of a raw MXU arc frame. Most of the lines are from the 1st order, but
the 2 lines displaced upwards by 4 px are from the 2nd order. b)−e) 2D
spectra of four objects. f)−i) The corresponding spatial profiles. The
figure illustrates that while a modest 2nd order contamination is present
(redwards of 8000 Å) in the spectra of the standard star used to establish
the flux calibration (LTT7379, panel e)), no 2nd order contamination is
seen in the galaxy spectra (cf. panel c)) due to their redder observed-
frame SEDs.

different stars all agreed until 8000 Å, after which they diverged,
with the blue stars (e.g. white dwarfs) indicating a higher sensi-
tivity than the relatively red stars (e.g. G-stars), consistent with
the divergence being due to a varying degree of 2nd order con-
tamination. We note that a wide aperture was used to extract
1D spectra, so all the flux from both spectral orders is included.
We decided to use the sensitivity function derived from the red-
dest star observed in both runs, namely the G0 star LTT7379
(Hamuy et al. 1992, 1994; cf. Fig. 6). In the 2D spectrum of this
star the 2nd order spectrum is visible from about 8200 Å (cf. the
upturn seen in Fig. 6a), so we expect that the calibration is sys-
tematically off redwards of 8000 Å by an amount which is mod-
est even at 9200 Å (cf. Fig. 7i). Since we expect the spectra of
the high-redshift galaxies to have almost no 2nd order contami-
nation due to their much redder observed-frame SEDs (see also
below), a single correction function f (λ) valid to a good approx-
imation for all high-redshift galaxies should exist. We note that
all results published in this paper (e.g. redshifts) are completely
unaffected by this issue.

The spectra were corrected for atmospheric extinction. The
extinction curve for La Silla was used (Tüg 1977; Schwarz
& Melnick 1993)10, since no extinction curve was available
for Paranal (ESO, priv. comm.). This is probably not a prob-
lem. The La Silla extinction curve (measured over 41 nights
in 1974−1976) can be compared with the Paranal FORS1

10 Also available at http://www.ls.eso.org/lasilla/sciops/
observing/Extinction.html

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079148&pdf_id=7
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Fig. 8. Comparison of colours synthesised from the spectra with colours from the photometry. Panels a) and b) concern (V − R), while panels c)
and d) concern (R − I). To generate this figure, we only used spectra that spanned the wavelength range 4800−7500 Å for panels a) and b), and
5700−8700 Å for panels c) and d). The different width of these minimum wavelength ranges explains the different number of plotted points.
Only galaxies at z = 0.15–1.05 are shown. Only spectra from fields with VRI photometry are used. Most of these are from run 3; the few spectra
from run 4 (from 2 masks) are shown with crosses. All colours and magnitudes have been corrected for Galactic extinction and are on the
AB system (Oke & Gunn 1983). The photometric colours and magnitudes have been measured within a circular aperture of radius 1′′ in images
corrected to the same fiducial seeing (cf. White et al. 2005). The used transformations to AB are VAB = VVega + 0.036, RAB = RVega + 0.216, and
IAB = IVega + 0.438.

broad-band extinction coefficients (measured over 174 nights
in 2000−2001) from Patat (2003). At 4300, 5500, 6600 and
7900 Å, which we here take to represent BVRI, the La Silla
extinction curve gives 0.22, 0.11, 0.05 and 0.02 mag airmass−1,
while the Paranal extinction coefficients are 0.22, 0.11, 0.07
and 0.05 mag airmass−1 on average, with standard deviations
of 0.01−0.02 mag airmass−1; in other words, a formally perfect
agreement for B and V , and a systematic difference for R and I.
The latter is likely due to the extinction curve representing the
part of the extinction that varies smoothly with wavelength and
which scales accurately with airmass (specifically Rayleigh scat-
tering, ozone absorption and aerosol scattering), but not the tel-
luric absorption bands from oxygen and water vapour present in
the R and I bands (Tüg 1977; F. Patat, priv. comm.). This is fortu-
nate, since we will anyway in a separate step correct for the part
of the extinction that is due to the telluric absorption bands. That
correction is based on spectroscopic observations of hot stars.

Several hot stars were observed. These stars are intrinsically
practically featureless in the region where the telluric absorp-
tion bands of interest are. Typically 1−2 stars were observed
at the start of the night and at the end of the night. A 1′′ wide
longslit was used, giving spectra going to 8600 Å. The contin-
uum was normalised to unity and the spectra from different stars
and nights were combined. The spectral regions around the 4 tel-
luric bands present in the hot star data (the B-band near 6900 Å,
a weaker feature near 7200 Å, the A-band near 7600 Å, and a
weaker feature near 8200 Å) were used to correct the MXU spec-
tra for telluric absorption as follows. For each mask, the spectra

of a few bright stars in the mask were located and used to de-
rive the scaling and the shift of the hot star spectrum around the
telluric feature in question. The typical rms in these fits was 0.05,
as reported by the telluric IRAF task. Each telluric feature
was scaled and shifted individually, apart from the weakest band
(the one close to 8200 Å), which was locked to the A-band. All
the spectra from the given mask were then corrected using this
scaled and shifted continuum-normalised hot star spectrum.

As a test of the flux calibration and the two extinction cor-
rection steps, we derived synthetic magnitudes from the spectra
and compared these with the photometry. The wavelength range
of the spectra varies (cf. Sect. 2.2): the bluest spectra start in
the middle of the B-band and cover the V and R-bands, and the
reddest spectra start a bit into the R-band and end beyond the
I-band. This means that (V − R) and (R − I) colours can be syn-
thesised from two disjoint subsets of the spectra without extrapo-
lation. The high-z fields with VRI photometry are suited for such
a comparison, whereas the mid-z fields with BVI photometry are
not. In Fig. 8, we show the results from the comparison. Panel (a)
shows the colour difference (V − R)synth − (V − R)phot versus the
photometric colour, and panel (b) shows the same colour dif-
ference versus photometric magnitude. Panels (c) and (d) show
(R − I). The scatter in colour difference is fairly small, namely
0.08 mag for (V − R) and 0.06 mag for (R − I), after reject-
ing 3σ outliers. This scatter comes from the following sources:
(1) photon noise in the spectra, (2) photon noise in the photome-
try, (3) possible differences due to the rectangular spectroscopic
apertures not being identical to circular photometric apertures,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079148&pdf_id=8
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and (4) possible spectrum-to-spectrum errors in the flux calibra-
tion. The mean value of the colour difference is 0.08± 0.01 mag
for (V −R) and −0.03±0.01 mag for (R− I). Ideally these values
should be zero. We have no explanation for the offset in (V −R),
but systematic relative flux calibration uncertainties of the order
of 10% are extremely difficult to avoid in multi-slit spectroscopic
observations. The negative offset in (R − I) is qualitatively in
agreement with the above-mentioned systematic error in the flux
calibration redwards of 8000 Å, since part of the I-band region
of the spectra is located there. It is reassuring to see that there
is no significant trend of colour difference with colour (Figs. 8a
and c). When a linear fit is performed, the slope is (0.031±0.026)
for (V−R) and (0.001±0.040) for (R−I). The fact that the (R−I)
slope is consistent with zero is compatible with our conjecture
that for high-redshift galaxies, regardless of SED (colour), the
2nd order contamination is negligible. Finally, we compared the
run 3 spectra, which constitute most of the points in Fig. 8, with
the run 4 spectra (shown as crosses). The run 4 points tend to
lie higher in the plots than the run 3 points, a difference that is
marginally significant (2−3 sigma). The difference may be due
to the different screen flat lamp setup used in run 4.

Our overall conclusion is that the accuracy of the flux cali-
bration is typically below 10%, which is very good for this type
of multi-object spectroscopy. The expected modest systematic
error in the flux calibration redwards of 8000 Å can be corrected
if it proves necessary.

3.5. Test of the wavelength calibration using skylines

To test the wavelength calibration, we measured the wavelength
of 3 strong and almost unblended skylines in all the 2D spec-
tra. The reference wavelengths of the 3 lines are 6300.30 Å,
6363.78 Å and 6863.96 Å (Osterbrock et al. 1996), where we
have taken into account that the first and the last of these lines
are blends of a strong line and a 10−12 times weaker line at
our spectral resolution (FWHM≈ 6 Å). For each of the 3 sky-
lines and for each of the ∼2000 spectra in the long masks, the
difference between the wavelength according to our wavelength
calibration and the reference wavelength, ∆λ ≡ λwlcal − λref , was
calculated. For the 3 lines, the mean values of ∆λ are −0.11 Å,
−0.05 Å and −0.33 Å, respectively. The standard deviations are
0.67 Å, 0.67 Å and 0.65 Å, respectively. Since the redshift is
given by z = λobs/λrest − 1, and since we typically measure
the redshift from spectral lines at wavelengths of approximately
λrest = 3800 Å, an error of 0.67 Å in the observed wavelength
λobs translates into an error in the redshift of 0.00018. We note
that this number is given with 5 decimals, whereas we normally
provide redshifts with only 4 decimals. This error corresponds to
a rest-frame velocity of 33 km s−1, at a typical redshift of z = 0.6.
Since this error is rather small, we have chosen not to correct for
it (the zero points of the wavelength calibrations of the individ-
ual spectra could in principle have been corrected using the mea-
sured values of ∆λ). It is worth pointing out that the arc frames
from which the wavelength calibrations were established were
taken during the day with the telescope pointing at zenith. The
fact that the typical error nevertheless is so small testifies to the
stability of the FORS2 instrument.

The measurement of the wavelength of the skylines was per-
formed using Gaussian fits. These fits also provided a measure
of the width (FWHM) of the lines. For a subset of the masks,
we tested how the line width depended on the absolute value
of the slit-tilt angle. It was found that there was only a weak

dependence: from 0◦ to 45◦ the FWHM increased on average by
just 4%.

4. Galaxy redshifts

4.1. The redshift measurements

Spectroscopic galaxy redshifts were measured using emission
lines where possible, in particular the [Oii]λ3727 line, or the
most prominent absorption lines, e.g. calcium K and H lines
at 3934 Å and 3968 Å. The redshifts were manually assigned a
quality flag. The vast majority of the measured redshifts are of
the highest quality, and these redshifts are listed without colons
in our data tables. Secure redshifts but with larger uncertainties
are listed with one colon, and doubtful redshifts are listed with
two colons. For a small fraction of the objects (3.3%), no red-
shift could be determined, and these redshifts are listed as 9.9999
in our data tables. For the objects targeted as possible cluster
members in the 66 long masks, the statistics are as follows:
2.8% stars, 93.9% galaxies and 3.3% without a determined red-
shift. Of the galaxy redshifts, the quality distribution (i.e. 0, 1 or
2 colons) is 96.0%, 2.6% and 1.4%, respectively.

We can estimate the typical redshift error using spectra for
the galaxies that have been observed more than once (i.e. in
more than one mask). In the long masks, we have 43 galaxies
with 2 redshifts available, and 2 galaxies with 3 redshifts avail-
able, when only using redshifts without colons. For each object
and for each redshift, we first compute the difference between
the redshift and the mean of the redshifts available for the object.
For example, if 2 redshifts of 0.4704 and 0.4708 are available we
derive differences of −0.0002 and 0.0002; and if 3 redshifts of
0.6960, 0.6962 and 0.6957 are available we obtain differences of
approximately 0.0000, 0.0002 and −0.0003. We then divide the
differences by 0.7071 for the differences coming from 2 redshifts
per object, and by 0.8166 for the differences coming from 3 red-
shifts per object. These scaling factors were calculated numeri-
cally based on a Gaussian distribution. The factors correct for the
fact that we calculate the differences with respect to the mean of
the observed values, not with respect to the (unknown) mean of
the parent distribution. We finally calculate a biweight estimate
of the dispersion of the 92 scaled differences, giving 0.00030
(note: 5 decimals) as the estimate of the typical redshift error.
This is the same value that was found in Halliday et al. (2004).
This error corresponds to 56 km s−1 in rest-frame velocity at a
typical redshift of z = 0.6.

4.2. Redshift histograms and cluster names

Redshift histograms for all 20 EDisCS fields are shown in Fig. 9
(mid-z fields) and Fig. 10 (high-z fields). The binsize in terms
of rest-frame velocity is kept constant at 1000 km s−1 for eas-
ier visual interpretation of the histograms. We note that red-
shift histograms for 5 of the fields (1232.5−1250, 1040.7−1155,
1054.4−1146, 1054.7−1245 and 1216.8−1201) were already
presented in Halliday et al. (2004), but they are repeated here
to give an overview of the full set of EDisCS spectroscopy.

On the redshift histogram for the given field, we have in-
dicated the location of the cluster(s) for which we have deter-
mined a velocity dispersion in Halliday et al. (2004) or this paper
(Sect. 6). Most fields have a single, main cluster. By main cluster
we mean the cluster corresponding to the LCDCS detection that
our survey originally targeted (cf. White et al. 2005). In some
fields there is a secondary cluster labelled “a”, and in one field,
there is also an additional secondary cluster labelled “b”. All the
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Fig. 9. Redshift histograms for the 10 mid-z fields. The clusters for which we have measured a redshift and a velocity dispersion (Halliday et al.
2004, or this paper) are indicated with the ±3σcl range shown. The labels are “M” for the main cluster and “a” or “b” for secondary clusters.
Both 0-colon redshifts (“secure”) and 1-colon redshifts (“secure but with larger uncertainties”) have been used in the plot. The binsize in z, ∆z,
varies with z in such a way that the binsize in rest-frame velocity, ∆vrest = c∆z/(1 + z), is kept constant at 1000 km s−1. This is achieved binning in
log (1 + z) space with a constant binsize of log (∆vrest/c + 1).

main clusters and two of the secondary clusters were already
discussed in White et al. (2005). In this paper, we identify 5 ad-
ditional secondary clusters, chosen so that we have measured a
velocity dispersion σcl of all structures with σcl >∼ 400 km s−1.
The naming of the clusters is simple: the main cluster is
named “cl” plus the field name (e.g. cl1103.7−1245), and the
secondary “a” and “b” clusters have that letter added (e.g.
cl1103.7−1245a, cl1103.7−1245b).

In the xy plots and velocity histograms presented in later sec-
tions, we indicate the location of the BCG. We therefore need to
identify BCGs for the 5 additional secondary clusters. We sim-
ply do this by provisionally identifying the brightest (in Itot)
spectroscopic member without colons on the redshift as the
BCG, see Table 3. We note that the BCGs listed in White et al.
(2005) for the other clusters were identified in a more elabo-
rate manner, considering also galaxies for which we only have
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Table 3. IDs for the preliminary BCGs for the additional sec-
ondary clusters.

Cluster Alt. zcl zBCG BCG ID
Mid-z fields:
cl1301.7−1139a G1_1301 0.3969 0.3976 EDCSNJ1301351−1138356
High-z fields:
cl1037.9−1243a . . . 0.4252 0.4278 EDCSNJ1037523−1244490
cl1138.2−1133a C2_1138 0.4548 0.4519 EDCSNJ1138086−1136549
cl1227.9−1138a C2_1227 0.5826 0.5812 EDCSNJ1227521−1139587
cl1354.2−1230a . . . 0.5952 0.5947 EDCSNJ1354114−1230452

Notes – For the remaining EDisCS clusters the BCG IDs are listed in
White et al. (2005). The column “Alt.” gives the name used in Poggianti
et al. (2006).

photometric redshifts. In fact, 3 of the 5 BCGs listed in Table 3
have quite blue colours compared to what is usual for BCGs,
making it likely that we simply have not obtained spectroscopy
for the true BCG. Conversely, the listed BCGs for the clus-
ters cl1301.7−1139a and cl1037.9−1243a have colours and total
magnitudes in line with the BCGs for the other EDisCS clusters
listed in White et al. (2005). These 2 BCGs have been included
in the study of the evolution of the EDisCS BCGs (Whiley et al.
2007).

A note should be made about the 1122.9−1136 field for
which we only have spectroscopy from an initial short mask
(plotted in Fig. 10). The galaxy listed in White et al. (2005)
as being the BCG and as having z = 0.6397 does in fact have
z = 0.4995. The few redshifts at hand do not give substantial
evidence of a cluster in that field. (The imaging does show some
evidence, see White et al. 2005.)

4.3. The spectroscopic catalogues

The spectroscopic catalogues for 5 fields were published
in Halliday et al. (2004), and the spectroscopic catalogues
for 14 fields are published in this paper. The last of the
20 EDisCS fields has very little data and is not published.
The spectroscopic catalogues are published electronically at the
CDS. The format of the tables is illustrated in Table 4.

Column 1 gives the object ID. The spectroscopic target se-
lection was based on photometric catalogues created from the
imaging available at the time. Subsequently deeper imaging was
obtained for some fields (e.g. the total exposure time went from 1
to 2 h), and new photometric catalogues were created. Both sets
of catalogues used the I-band image for the object detection and
segmentation/deblending (Bertin & Arnouts 1996). For the fields
where the I-band image changed because further data were ac-
quired, the object segmentation occasionally differed. For ex-
ample, a galaxy and a star seen next to each other in projec-
tion might have been correctly segmented into two objects in the
old catalogue but merged into one object in the new catalogue,
or vice versa. The impact is as follows. For 99.5% of the ob-
jects targeted and observed spectroscopically the object in the
old catalogue is also found in the new catalogue, and here we
give the new ID (IDs starting with EDCSNJ). For the remain-
ing 0.5%, the object from the old catalogue is not found in the
new catalogue, and here we have constructed IDs starting with
EDCSXJ. Additionally, a handful of objects, all non-targeted
(i.e. serendipitously-observed), neither existed in the old nor in
the new catalogues, and we have given these IDs starting with
EDCSYJ. We note that the EDCSXJ and the EDCSYJ objects
are not found in the published photometric catalogues (e.g. the

optical ones from White et al. 2005), since these catalogues are
the new ones, but these objects can still be used for purposes that
only use the redshift (and position), such as determining cluster
velocity dispersions and substructure.

Another issue are the cases where a single object from
the photometric catalogue was found to correspond to two
physically-distinct objects in the obtained spectrum, i.e. at differ-
ent redshifts. In the cases where the two redshifts were close, we
inspected the available imaging, including HST imaging where
available (Desai et al. 2007), to check that the photometric ob-
ject did in fact correspond to two distinct galaxies. For these
physically-distinct objects we have constructed unique IDs by
appending “:A” and “:B” to the ID from the photometric cata-
logue (with :A being the southernmost object). We note that in
Halliday et al. (2004), where there was one such case, we ap-
pended a colon to the IDs for both physical objects instead of :A
and :B, resulting in IDs that were not unique, which might be
slightly misleading.

Column 2 gives the right ascension, and Col. 3 gives the dec-
lination (J2000).

Column 4 gives I1, the I-band magnitude (not corrected for
Galactic extinction) within a circular aperture of radius 1′′. This
magnitude comes from the new catalogues (published in White
et al. 2005), except for the EDCSXJ objects where it comes from
the old catalogues. No magnitude is available for the EDCSYJ
objects, and a value of 99.99 is listed in the table.

Column 5 gives the redshift, optionally with one or two
colons appended to signify lower quality, see Sect. 4.1. In this
paper, the redshifts are always given with 4 decimals. A value
of 0.0000 denotes a star, and 9.9999 denotes that no redshift
could be determined.

Column 6 gives the membership flag. It is 1 for members
of the main cluster, 1a for members of the secondary “a” cluster,
1b for members of the secondary “b” cluster, 0 for field galaxies,
and “–” for stars and objects without a determined redshift. The
tables for the 14 fields contain flags indicating the 21 clusters
listed in Table 5 ahead. Membership is defined as being within
±3σcl from zcl.

Column 7 gives the targeting flag: see Table 2 and Sect. 2.2.
The published redshifts come from the 66 long masks (i.e.

those listed in Table 1). In addition, 9 redshifts from the short
initial masks (cf. Sect. 2.3) are added: 8 galaxies that are mem-
bers of cl1037.9−1243a (zcl = 0.4252), and 1 galaxy that is a
member of cl1103.7−1245 (zcl = 0.9586).

As mentioned in Sect. 4.1, some objects were observed more
than once. In Halliday et al. (2004), the published tables simply
contained all the observations. Here we publish two tables per
field: one with one entry per unique object ID, and one table
with extra observations. For example, if an object was observed
3 times, we place the best observation in the unique object table,
and the two other observations in the extra table. What consti-
tutes the best observation is determined from a set of rules, for
example that a redshift with 0 colons has priority over a redshift
with 1 colon, and that a targeted observation has priority over a
serendipitous observation.

5. Completeness, success rate and potential
selection biases

5.1. Completeness and success rate

The target selection process, as a function of I1 magnitude, is
illustrated in Fig. 11. Each panel corresponds to a given field.
To provide a complete overview we also show the 5 fields
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Fig. 10. Redshift histograms for the 10 high-z fields. Otherwise this figure is similar to Fig. 9.

from Halliday et al. (2004). The starting point is a photometric
catalogue (solid histogram). Using the 4 target selection rules
(Sect. 2.1), the target catalogue is created (dashed histogram).
Some of the targets are observed (dotted histogram). For the
vast majority of these (95% on average), a secure redshift is ob-
tained (long-dashed histogram). Some of these objects are galax-
ies that are members of any of the clusters in the given field, for
which we measured a velocity dispersion, cf. Table 5 (light red
filled histogram). Some galaxies are members of the cluster(s)
at the redshift(s) targeted by the zphot-based target selection for
the given field (dark red filled histogram). The distinction be-
tween the two sets of clusters is illustrated by the 1037.9−1243

field: we measured a velocity dispersion for both the main clus-
ter (cl1037.9−1243, zcl = 0.58) and for the secondary “a” cluster
(cl1037.9−1243a, zcl = 0.43). However, the zphot-based target se-
lection only targeted 0.58 (cf. Table 1), i.e. only the main cluster.
The cluster redshifts are given on the figure, with the redshifts
for the non-targeted clusters being given in parentheses. All the
histograms shown in the figure were computed within the region
on the sky spanned by the spectroscopic observations. As can be
seen from the xy plots in Fig. 16, the objects observed spectro-
scopically occupy a region that does not span the full width of
the imaging. This is done in order to obtain a useful wavelength
coverage in the spectra, cf. Sect. 2.2.
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Table 4. Illustration of the format of the spectroscopic catalogues.

Object ID RA (J2000) Dec (J2000) I1 z Membership flag Targeting flag
(1) (2) (3) (4) (5) (6) (7)

EDCSNJ1103355−1244515 11:03:35.53 −12:44:51.5 20.585 0.6259 1a 1
EDCSNJ1103373−1246364 11:03:37.34 −12:46:36.4 22.051 0.7030 1b 1
EDCSNJ1103420−1244409 11:03:41.99 −12:44:40.9 22.488 0.9637 1 1
EDCSNJ1103539−1248430 11:03:53.85 −12:48:43.0 22.556 0.2727 0 2
EDCSNJ1103538−1246324 11:03:53.76 −12:46:32.4 22.828 0.7539 0 3
EDCSNJ1018371−1214297 10:18:37.12 −12:14:29.7 19.670 0.0000 – 4
EDCSNJ1103351−1249044 11:03:35.12 −12:49:04.4 22.938 9.9999 – 1
EDCSNJ1103397−1246532 11:03:39.69 −12:46:53.2 23.497 0.6246: 1a 3
EDCSNJ1103452−1245403 11:03:45.16 −12:45:40.3 22.406 0.9383:: 0 1
EDCSNJ1227551−1136202:A 12:27:55.07 −11:36:20.2 21.475 0.6390 1 1
EDCSNJ1227551−1136202:B 12:27:55.07 −11:36:20.2 21.475 0.5441 0 1
EDCSXJ1103539−1244439 11:03:53.91 −12:44:43.9 22.63 0.7025 1b 1
EDCSYJ1059032−1254311 10:59:03.21 −12:54:31.1 99.99 0.4579 1 3

Notes – This example table contains entries from several survey fields simply to illustrate all relevant features of the tables published electronically
with this paper at the CDS, in which the survey fields are not mixed.

Fig. 11. The target selection process as a function of magnitude for the EDisCS fields with long spectroscopic exposures plus the 1238 field. For
each panel, the figure shows: solid histogram: objects in the photometric catalogue, dashed histogram: targets, dotted histogram: observed targets,
long-dashed histogram: targets with a secure redshift, light red filled histogram: galaxies that are members of any cluster in the field (cf. Table 5),
dark red filled histogram: galaxies that are members of the cluster(s) at the redshift(s) targeted by the zphot-based target selection. The dotted and the
long-dashed histograms often coincide, indicating that a secure redshift was obtained for all the observed targets. All numbers have been computed
within the region on the sky spanned by the spectroscopic observations, with the range in x being given on the panels, and the range in y being
100−1950 px, cf. the xy plots (Fig. 16). The cluster redshifts are given on the figure. If more than one value is given, the order is: main cluster,
secondary cluster “a”, secondary cluster “b”. Values in parentheses are for clusters that are not at the redshift(s) targeted by the zphot-based target
selection.
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Table 5. Cluster redshifts and velocity dispersions.

Cluster zcl σcl [km s−1] Nmem, 0 Nmem, 01 Nmem, 012

Mid-z fields:
cl1018.8−1211 0.4734 486 +59

−63 32 32 33
cl1059.2−1253 0.4564 510 +52

−56 41 41 41
cl1119.3−1129 0.5500 166 +27

−29 17 17 17
cl1202.7−1224 0.4240 518 +92

−104 19 19 19
cl1238.5−1144 0.4602 447+135

−181 4 4 4
cl1301.7−1139 0.4828 687 +81

−86 34 35 35
cl1301.7−1139a 0.3969 391 +63

−69 17 17 17
cl1353.0−1137 0.5882 666+136

−139 18 20 20
cl1411.1−1148 0.5195 710+125

−133 21 22 22
cl1420.3−1236 0.4962 218 +43

−50 22 24 24
High-z fields:
cl1037.9−1243 0.5783 319 +53

−52 16 16 16
cl1037.9−1243a 0.4252 537 +46

−48 43 44 45
cl1103.7−1245 0.9586 534+101

−120 9 10 10
cl1103.7−1245a 0.6261 336 +36

−40 14 15 15
cl1103.7−1245b 0.7031 252 +65

−85 11 11 11
cl1138.2−1133 0.4796 732 +72

−76 45 48 49
cl1138.2−1133a 0.4548 542 +63

−71 11 12 14
cl1227.9−1138 0.6357 574 +72

−75 22 22 22
cl1227.9−1138a 0.5826 341 +42

−46 11 11 11
cl1354.2−1230 0.7620 648+105

−110 20 21 21
cl1354.2−1230a 0.5952 433 +95

−104 14 14 15

Notes – Nmem, 0 is the number of (unique) cluster members having
redshifts without colons (indicating “secure” redshifts). Nmem, 01 also
includes 1-colon redshifts (“secure but with larger uncertainties”).
Nmem, 012 also includes 2-colon redshifts (“not secure”). We note that
redshifts and velocity dispersions for 5 additional EDisCS clusters are
available in Halliday et al. (2004).

The completeness, here defined as the fraction of the targets
for which a secure redshift was obtained, is shown in Fig. 12.
The completeness typically decreases as function of magnitude.
This happens because the mask-design procedure (Sect. 2.2)
gives priority to the brighter objects. When using the spectro-
scopic sample to study properties that depend on magnitude,
such as the incidence of emission lines in the spectra, a cor-
rection for the completeness as a function of magnitude can be
made using such histograms, cf. Poggianti et al. (2006). It should
be noted that Figs. 11 and 12 are based on the published red-
shift tables (Halliday et al. 2004, and this paper). This means
that a few secure redshifts for field galaxies and stars from the
initial short masks are not included (cf. Sects. 2.3 and 4.3), so
the actual completeness is slightly higher than shown in Fig. 12,
particularly at bright magnitudes.

The histograms in Fig. 11 also indicate the success rate of
the target selection, i.e. the ratio between the number of galaxies
that are members of the cluster(s) at the redshift(s) targeted by
the zphot-based target selection (dark red filled histogram) and the
number of observed targets (dotted histogram). In terms of the
overall success rate (i.e. not as a function of magnitude), for
the 21 targeted clusters in all 19 fields with long masks, the
success rate is 37% on average, ranging from 12% for the
1103.7−1245 field (zcl = 0.70), to 63% for the 1301.7−1139
field (zcl = 0.40, 0.48).

Had we also considered the 5 clusters that happen to be lo-
cated in the fields but that were not targeted by our zphot-based

selection (i.e. the 5 clusters with redshifts given in parentheses
on Fig. 11), the success rate would have been 41% on average
for the 19 fields, ranging from 21% for the 1238.5−1144 field
(zcl = 0.46), to 64% for the 1138.2−1133 field (zcl = 0.48,
0.45). A note should be made about these 5 non-targeted clusters.
Three of them (cl1103.7−1245a at zcl = 0.63, cl1138.2−1133a
at zcl = 0.45, and cl1227.9−1138a at zcl = 0.58) are at red-
shifts that are less than 0.1 from the redshifts targeted by the
zphot-based selection (cf. Table 1), and any bias in the obtained
spectroscopic samples of these clusters is probably small. The
remaining two clusters are further than 0.1 from the targeted red-
shifts: cl1037.9−1243a at zcl = 0.43, where the selection was
zphot ∈ [0.38, 0.78] (i.e. centered on 0.58), and cl1103.7−1245 at
zcl = 0.96, where the selection was zphot ∈ [0.50, 0.90] (i.e. cen-
tered on 0.70). For the latter cluster in particular, it is possible
that the obtained spectroscopic sample is biased with respect to
the cluster members as a whole, e.g. in terms of their spectral en-
ergy distributions, because the observed sample is one of galax-
ies at zspec = 0.96 for which the photometry gives zphot in the
range 0.50−0.90. For this reason, the spectroscopic samples for
those two clusters have not been used in studies of the [OII] emit-
ting galaxies (Poggianti et al. 2006) and the HST-based visual
galaxy morphologies (Desai et al. 2007), even though both clus-
ters have interesting properties (a large number of confirmed
members and high redshift, respectively).

5.2. Failure rate

As described in Sect. 2.1 the 4 target selection rules were: 1: the
magnitude I1 had to be in a certain range; 2: the photometric red-
shift zphot had to be in a certain range or the probability of being
at the cluster redshift had to be greater than 50%; 3: the hyperz
galaxy and star flags had to have certain values designed to re-
move objects that were not galaxies and possibly stars; and 4: the
FWHM or the ellipticity had to be greater than certain values de-
signed to remove small and round objects (likely stars; only in
runs 3−4). We want to know whether rules 2−4, on top of the
simple magnitude selection (rule 1), miss cluster members at the
targeted redshifts. We are able to test this because a smaller frac-
tion of the observed objects do not meet the target selection rules
– these are objects that were used to fill the masks or which were
serendipitously-observed. We proceed as follows. In the 66 long
masks (cf. Table 1), we select objects that meet rule 1 but not all
of rules 2−4. These are 154 (unique) objects. We then remove
the 6 objects that we know are blended, i.e. objects with colon-
IDs, indicating that a single photometric object turned out to be
two spectroscopic objects, typically two galaxies seen in projec-
tion (cf. Sect. 4.3). In this situation, the photometric redshift is
not meaningful. We also remove the 10 targeting flag 4 objects,
i.e. objects that were hand-picked to be stars, and placed into the
masks to help field acquisition and to measure seeing. We are left
with 138 objects, of which 122 objects (comprised of 102 galax-
ies and 20 stars) have a measured redshift. Of these 122 objects,
4 are members of the cluster(s) at the targeted redshift(s) for the
given field. Therefore, a reasonable estimate of the failure rate
of the target selection is 4/122 ≈ 3%. Of the 4 failures, 3 failed
rule 2. The spectral types of these 3 galaxies differ: one has an
absorption-line spectrum, one has an absorption-line spectrum
possibly with some emission-filling in Hβ, and one has a spec-
trum with strong emission lines. One galaxy failed rule 3; this
galaxy has an absorption-line spectrum. In conclusion, the fail-
ure fraction is low (about 3%), and the data for the small number
of failures do not indicate that a bias towards a particular spectral
type exists. The target selection procedure worked effectively,
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Fig. 12. The completeness as function of magnitude for the EDisCS fields with long spectroscopic exposures plus the 1238 field. The completeness
is defined as Nsecure z/Ntargets, with Nsecure z being the number of targets for which a secure redshift was obtained (long-dashed line in Fig. 11), and
Ntargets being the number of targets (dashed line in Fig. 11). The shown error bars are too large, since they were calculated assuming that the errors
on Nsecure z and Ntargets are uncorrelated.

and for all intents and purposes we expect that our spectroscopic
sample of galaxies at the targeted redshifts behaves as an I-band
selected sample.

6. Cluster redshifts and velocity dispersions

The peculiar velocity of a galaxy with redshift z in the rest-frame
of a cluster with redshift zcl is given by

vrest
pec = c(z − zcl)/(1 + zcl) (for vrest

pec 
 c) (2)

(e.g. Carlberg et al. 1996). The dispersion of the vrest
pec values for

the cluster members is the cluster rest-frame velocity disper-
sion σcl. Following standard practice, we will omit rest-frame
and simply refer to σcl as the cluster velocity dispersion.

We have tested 2 methods for the determination of zcl
and σcl. The data used in both cases are the set of 0-colon galaxy
redshifts available for the given field. Both methods employ an
iterative ±3 sigma clipping scheme to determine which galaxies
are cluster members. This works as follows. First, initial guesses
of zcl andσcl are obtained. Then, the following two steps are iter-
ated until convergence in zcl andσcl is reached: (1) Calculate vrest

pec

(which depends on zcl) for all the galaxies. (2) For galaxies with
vrest

pec in the interval [−3σcl,+3σcl], calculate a new estimate of zcl
and σcl. The details of the 2 methods are described below.

Method 1 is the method used in our previous paper (Halliday
et al. 2004). A first estimate of zcl is obtained from a visual
inspection of the redshift histogram. Galaxies with redshifts out-
side the region zcl ± 0.015 are removed and cannot enter the
analysis at a later stage. The median redshift of the remaining
galaxies is used as a new estimate of zcl, and this value is used to
calculate vrest

pec . The standard deviation of the vrest
pec values is used as

the initial estimate of σcl. The iteration then starts, using the me-
dian to estimate zcl, and the biweight scale estimator (Beers et al.
1990) to estimate σcl. In the event that the final number of cluster
members is below 10, the process is repeated using the gapper
scale estimator (Beers et al. 1990) instead of the biweight scale
estimator. The 68% asymmetric error bars on σcl are determined
by generating bootstrap samples from the final set of vrest

pec values
for the cluster members. For each bootstrap sample, a value of
σcl is measured without any iterative clipping.

Method 2 uses the final value of zcl from method 1 as the ini-
tial guess of zcl. It uses an initial guess of σcl of either 200, 300,
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Fig. 13. Comparison of the cluster velocity dispersions determined using the 5 methods that we have tested. From left to right for each cluster,
the methods are: method 1, method 2200, method 2300, method 2500 and method 21000 (see Sect. 6). For most clusters, the results from all methods
agree, but for 6 clusters marked with “(*)” this is not the case. For these clusters, the 5 estimates of σcl are illustrated in Fig. 14.

500 or 1000 km s−1, which gives rise to four variants of method 2
referred to as methods 2200, 2300, 2500 and 21000. In the iteration,
the biweight location estimator (Beers et al. 1990) is used to es-
timate zcl and the biweight scale estimator is used to estimate
σcl. The 68% asymmetric error bars on σcl are determined by
generating bootstrap samples from the final set of redshifts for
the cluster members. Each bootstrap sample is subjected to the
same iterative-clipping procedure as the original dataset itself.

The five methods were employed to determine the cluster
velocity dispersions of 21 clusters in the 14 fields. We compare
the results of the different methods in Fig. 13. It is seen that
for most clusters the 4 variants of method 2 give identical results
(indicating that the initial guess ofσcl has no effect on the result),
and the results from method 2 also agree with that from method 1
to within a few per cent. However, for the 6 clusters marked with
“(*)” in Fig. 13 not all 5 methods agree. For these clusters the
results (i.e. zcl, σcl and number of cluster members Nmem, 0) from
the 5 methods are illustrated in Fig. 14. This figure shows vrest

pec
histograms calculated for the given value of zcl. The overplotted
Gaussians illustrate the given value of σcl, and the vertical dot-
dashed lines indicate ±3σcl and hence which galaxies were used
in the measurement of σcl (i.e. the cluster members).

We have inspected the vrest
pec histograms (Fig. 14) to determine

which value of σcl we consider to be the most “correct” one. For
the 6 clusters, our comments are as follows:
cl1202.7−1224: Two possible values: ≈250 and 520 km s−1. The
large value is driven by 4 galaxies on the blue side and 1 galaxy
on the red side. These 5 galaxies have a similar location on
the plane of the sky to the 14 galaxies in the central velocity
peak. Furthermore, the separation in velocity space between the
4 galaxies on the blue side and the 14 galaxies in the central peak
is small. This makes us favour the larger value.
cl1353.0−1137: Two possible values: ≈660 and 970 km s−1. The
large value is driven by 2 galaxies which seem to belong to a
different peak, which makes us favour the smaller value.
cl1037.9−1243: Values range from ≈320 to 570 km s−1. The
3 galaxies on the blue side that drive the difference seem some-
what separated in velocity space from the remaining galaxies,
which makes us marginally favour the smaller value.
cl1103.7−1245b: Two possible values: ≈250 and 700 km s−1.
The 4 galaxies that drive the difference seem to constitute a sep-
arate peak, which makes us favour the smaller value.
cl1227.9−1138a: Values range from ≈340 to 1090 km s−1.

The galaxies that drive the difference seem to constitute several
separate peaks, which makes us favour the small value. It was
the fact that method 1 gave us the larger value for this particular
cluster that made us test the other methods.
cl1354.2−1230a: Values range from ≈430 to 650 km s−1. Some
of the difference is driven by a single galaxy on the blue side
which seems quite far from the other galaxies in velocity space.
This makes us favour the smaller value.

The conclusion is that method 2300 – as the only of the tested
methods – in all cases provides the result that we consider to be
the most “correct” one. We therefore adopt this method through-
out the rest of the paper. However, while the method 2300 re-
sults constitute our best guess, the velocity dispersions for these
6 clusters should still be treated as being more uncertain than for
the rest of the clusters.

The adopted values of the cluster redshifts, velocity disper-
sions and number of member galaxies for all 21 clusters in the
14 fields are listed in Table 5. The values of the velocity disper-
sions are discussed in Sect. 8.

7. Cluster substructure

Possible cluster substructure is investigated using velocity his-
tograms (Sect. 7.1), xy plots (Sect. 7.2) and a Dressler-Shectman
analysis (Sect. 7.3).

7.1. Velocity histograms

Histograms of peculiar velocities in the cluster rest-frame,
vrest

pec , are shown for the 26 EDisCS clusters in Fig. 15. These
26 clusters are the ones with a measured velocity disper-
sion from Halliday et al. (2004) or this paper. The veloc-
ity of the BCG is indicated with a blue/filled arrow, ex-
cept for the 2 BGCs without a spectroscopic redshift (clusters
cl1059.2−1253 and cl1037.9−1243, cf. White et al. 2005). In
a few cases, the adopted BCG has a substantial peculiar veloc-
ity, e.g. in cl1354.2−1230, cf. e.g. Pimbblet et al. (2006). The
overplotted Gaussians illustrate the measured velocity disper-
sions. We note that velocity histograms for 5 of the clusters
were already shown in Halliday et al. (2004), but those plots
showed observed-frame rather than rest-frame peculiar veloci-
ties, whereas the overplotted Gaussians corresponded to the rest-
frame velocity dispersions.
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Fig. 14. Histograms of peculiar velocities in the cluster rest-frame, vrest
pec = c(z− zcl)/(1+ zcl), for the 6 clusters for which the 5 methods of measuring

the cluster redshifts and velocity dispersions do not all agree (cf. Fig. 13). Each row shows a given cluster. We note that all panels in a given row
are based on the same redshift data, but since the histograms show vrest

pec which depends on the cluster redshift zcl, the histograms do not always look
completely identical. Each column shows a given method, from left to right: method 1, method 2200, method 2300, method 2500 and method 21000.
For the analysis we adopt method 2300. The remaining features of the plots are described in the caption of Fig. 15.

From these velocity histograms, most of our clusters appear
to be fairly well-described by Gaussian dispersions, particularly
those with many members or high velocity dispersions. It is gen-
erally unclear whether departures from Gaussianity are real or
an effect of limited statistics. One feature that does stand out,
however, is the incidence of smaller galaxy associations close
to our clusters, which may be due to the tails of the true veloc-
ity distribution being longer than Gaussian, but in many cases
appear to be separate from the cluster itself. These may be inter-
preted as groups which surround, and will eventually fall into,
the main clusters.

7.2. XY position diagrams

Plots of the locations of the galaxies on the sky (xy plots) for
the 26 EDisCS clusters are shown in Fig. 16. The cluster mem-
bers are shown with large symbols. The symbol type and colour
indicate which bin the peculiar velocity in the rest-frame of

the cluster, vrest
pec , falls into. Non-cluster members are shown with

small dots. The cross indicates the adopted BCG. One of the
19 main clusters, namely cl1227.9−1138, has a BCG that is close
to the edge of the field, cf. White et al. (2005). We note that xy
plots for 5 of the clusters were already shown in Halliday et al.
(2004), but they have been repeated here to provide an overview
of the full sample and because the plots here also show the
non-cluster members, thus illustrating over which region spec-
troscopy has been obtained.

For the blended objects where one object in the photometric
catalogue turned out to be two physical objects in the spectrum
(cf. Sect. 4.3), the two objects (:A and :B) have identical (x, y)
coordinates, namely the (x, y) coordinates from the photometric
catalogue. To allow both objects to be visible in the same xy
plot, we have offset the :A object by 1′′ south and the :B object
by 1′′ north.

The clusters with velocity dispersions >∼400 km s−1 generally
display a well-defined centre, usually coincident with the BCG.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079148&pdf_id=14


440 B. Milvang-Jensen et al.: Spectroscopy of clusters in EDisCS. II.

Fig. 15. Histograms of peculiar velocities in the cluster rest-frame, vrest
pec = c(z − zcl)/(1 + zcl), for the 26 EDisCS clusters. The solid histograms

are for galaxies having redshifts without colons (indicating “secure” redshifts). The dashed histograms include the 1-colon redshifts (“secure but
with larger uncertainties”). The dotted histograms include the 2-colon redshifts (“not secure”). The binsize is 250 km s−1 and the plotted range is
±4000 km s−1. The overplotted Gaussians illustrate the measured velocity dispersion σcl of the given cluster. The vertical dot-dashed lines indicate
±3σcl, the limits used to define cluster membership. The number of cluster members having redshifts without colons is given as Nmem, 0, and the
area underneath the Gaussian corresponds to this number. The red skeletal arrows are located at vrest

pec = 0 km s−1 and thus indicate the adopted cluster
redshifts. The blue filled arrows indicate the adopted BCGs (except where no redshift is available).

However, several of these clusters show signs of sub-clumps
with coherent motion, or possibly even, for cl1216.8−1201 and
cl1037.9−1243a, an overall rotation of the cluster.

7.3. The Dressler-Shectman test

In order to check for the presence of substructure in
three-dimensional space, we combine velocity and positional
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Fig. 16. xy plots for the 26 EDisCS clusters. North is up and east is to the left. The units on the axes are pixels = 0.2′′. Only galaxies with no
colons on their redshifts are shown. The small dots are the non-members. The large symbols are the cluster members. Depending on in which bin
vrest

pec falls, the symbols are: blue triangles: [−3σcl,−1σcl[, green circles: [−1σcl,+1σcl], red squares: ]+1σcl,+3σcl]. The cross indicates the adopted
BCG, which in the case of cl1059.2−1253 and cl1037.9−1243 does not have any spectroscopy, cf. White et al. (2005). 1 Mpc bars are shown for
the assumed cosmology (Ωm = 0.3, ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1).

information by computing the statistics devised by Dressler &
Shectman (1988). The test works in the following way: for each
galaxy that is a spectroscopic cluster member (defined through-
out this paper as being within ±3σcl from zcl), the ten nearest
neighbours are found, and the local velocity mean and veloc-
ity dispersion are computed from this sample of 11 galaxies.

These quantities are compared to the global dynamical param-
eters computed for the clusters by defining the deviation δ as:

δ2 = (11/σ2)
[
(v̄local − v̄)2 + (σlocal − σ)2

]
(3)

where v̄ and σ are the global dynamical parameters and v̄local
and σlocal are the local mean recessional velocity and velocity
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Fig. 17. Dressler-Shectman (DS) plots. The DS analysis has only been performed on clusters with at least 20 members. The plots show the x, y
location of the cluster members. The radii of the plotted circles are equal to eδ/2 where δ is the DS measurement of local deviation from the global
velocity dispersion and mean recession velocity (cf. Eq. (3)). The blue/green/red circles (also shown as dotted/solid/hashed) indicate velocity in
the same way as in the xy plots (Fig. 16). The probability P given on the figure is the probability of there being no substructure in the dataset; thus,
a small value (e.g. less than 0.05) indicates that substructure has been detected. The number of members is also given on the figure; only redshifts
without colons have been used. The 9 clusters in this figure are shown in the same order as in Table 6. We note that DS plots for 5 more clusters
are found in Halliday et al. (2004).

dispersion, determined using the 10 closest galaxies (with spec-
troscopy available). Velocities and velocity dispersions were
transformed to the rest-frame of the cluster.

Dressler & Shectman also define the cumulative deviation ∆
as the sum of the δ for all the cluster members Ng. We note that
the ∆ statistic is similar to a χ2: if the cluster velocity distribution
is close to Gaussian and the local variations are only random
fluctuations, then ∆ will be of the order of Ng.

We have applied the above test to all structures with at least
20 members, as a conservative compromise between the formal
minimum number required to perform the test (>11), coupled to
the desire to analyse a sample of clusters as large as possible, and
the need to find statistically-significant substructures. We note
that Dressler & Shectman (1988) apply the method to clusters
with at least 26 members. The results of our analysis are shown
in Fig. 17. In each panel, the size of the symbols is proportional

to eδ/2 and the symbols are coloured according to rest-frame pe-
culiar velocity in the same way as in the xy plots (Fig. 16).

In order to give a quantitative estimate of the significance
of substructure, we have performed 1000 Monte Carlo realiza-
tions for each structure by randomly shuffling the velocities of
the galaxies used for the analysis. The significance of the oc-
currence of dynamical substructure can be quantified using the
ratio P between the number of simulations in which the value
of ∆ is larger than the observed value, and the total number of
simulations.

In Table 6 we list, for each of the clusters used in this analy-
sis, the number of spectroscopic members, the measured∆ statis-
tic, and the probability P of there being no substructure.

Out of the 9 clusters tested in this paper, significant sub-
structure (P ≤ 5%) is detected in 2 clusters: cl1037.9−1243a at
z = 0.43 (P = 1.0%) and cl1354.2−1230 at z = 0.76 (P = 0.1%).
In Halliday et al. (2004), we tested 5 clusters and detected
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Table 6. Results from the Dressler-Shectman test.

Cluster zcl Ng ∆ P
Mid-z fields:
cl1018.8−1211 0.4734 32 32.559 0.264
cl1059.2−1253 0.4564 41 50.193 0.077
cl1301.7−1139 0.4828 34 31.261 0.586
cl1411.1−1148 0.5195 21 13.914 0.841
cl1420.3−1236 0.4962 22 21.594 0.482
High-z fields:
cl1037.9−1243a 0.4252 43 59.027 0.010
cl1138.2−1133 0.4796 45 38.456 0.631
cl1227.9−1138 0.6357 22 14.428 0.782
cl1354.2−1230 0.7620 20 31.260 0.001

Notes – Ng is the number of cluster members used in the test (Ng is
identical to Nmem, 0 in Table 5), ∆ is the Dressler-Shectman statistic,
and P is the probability of there being no substructure in the dataset;
thus, a small value (e.g. less than 0.05) indicates that substructure has
been detected. We note that Dressler-Shectman results for 5 additional
EDisCS clusters are available in Halliday et al. (2004).

significant substructure in 2 clusters: cl1232.5−1250 at z = 0.54
(P = 1%) and cl1216.8−1201 at z = 0.79 (P = 5%). The fraction
of EDisCS clusters with detected substructure is 4/14 = 29%.
The same level, 21/67 = 31%, was found by Solanes et al. (1999)
for a local (z <∼ 0.1) sample of clusters from the ESO Nearby
Abell Cluster Survey (ENACS). This sample is also optically-
selected, and the same substructure definition was used, i.e. the
Dressler & Shectman (1988) test with a P = 5% threshold. More
data are required to check this apparent lack of evolution in the
fraction of clusters with substructure from z ∼ 0.6 to z = 0.1.

8. Discussion

With spectroscopic velocity dispersions, σspec, available for all
the EDisCS clusters, we can compare these values with the
singular isothermal-sphere velocity dispersions from the weak-
lensing analysis from Clowe et al. (2006), σlens. The weak-
lensing analysis derived a velocity dispersion for the main clus-
ter in each field, and noted if additional mass peaks were present
in the lensing maps. In Fig. 18, we plot σlens vs. σspec for the
19 main clusters. The blue triangles are the clusters with other
structures sufficiently close by in redshift-space, that may di-
rectly affect the lensing measurements (Clowe et al. 2006), and
the red squares are the remainder of the clusters. Visually there
is a fairly convincing positive correlation between the two ve-
locity dispersion measurements. Both a Kendall and a Spearman
rank correlation test (e.g. Press et al. 1992) lend some support to
this: the probability of no correlation comes out to 9% and 4%,
respectively. There is no clear offset between the clusters with
other peaks in the lensing maps (blue triangles) and the rest
of the clusters (red squares). The 3 clusters in the plot with
a significant spectroscopic detection of substructure based on
the Dressler-Shectman test (probability of no substructure ≤5%,
Halliday et al. 2004 and Sect. 7.3) are indicated with large cir-
cles. (The fourth cluster with such a detection, cl1037.9−1243a,
is not shown in the plot since it is not a main cluster.) One
could have expected thatσspec for these clusters would have been
higher for their mass (and thus σlens) than for the other clusters,
but the limited data in Fig. 18 do not indicate this. This may indi-
cate that the detected substructure does not have a strong effect
on the measured spectroscopic velocity dispersions. Of the re-
maining 16 clusters in the plot, the Dressler-Shectman test does
not find significant substructure for 10 of the clusters, and for

Fig. 18. Comparison of the velocity dispersions obtained from the weak
lensing analysis (Clowe et al. 2006), σlens, with the velocity dispersions
obtained from the spectroscopy (Halliday et al. 2004 and this paper),
σspec. The figure shows the 19 main EDisCS clusters (z = 0.42−0.96).
The blue triangles are the clusters with other structures near enough to
possibly affect the lensing measurements (Clowe et al. 2006), and the
red squares are the rest of the clusters. The 3 circled clusters are those
for which the Dressler-Shectman test gives a significant detection of
substructure (Halliday et al. 2004 and this paper). The dotted line shows
the one to one correspondence. Abbreviated cluster names are given on
the figure. The 2 major outliers of the blue triangles are cl1059.2−1253
and cl1103.7−1245, both of which were identified in Clowe et al. (2006)
as having extremely high mass-to-light ratios. The 3 major outliers of
the red squares are cl1420.3−1236, cl1054.7−1245 and cl1054.4−1146.

the last 6 clusters the test has not been performed due to the
number of spectroscopic members being less than 20. Among
the outliers in the plot the case of cl1103.7−1245 can easily be
explained: the extra lensing signal is probably due to the sec-
ondary cl1103.7−1245a cluster to the south. A detailed analysis
of the comparison between spectroscopic and lensing velocity
dispersions will be presented in Clowe et al., in prep.

The (spectroscopic) velocity dispersions for the EDisCS
clusters are generally lower than the velocity dispersions for
other well-studied samples of clusters at similar redshifts. This
is illustrated in Fig. 19, which plots velocity dispersion versus
lookback time for the EDisCS clusters as well as for the
MORPHS clusters (e.g. Smail et al. 1997) and the ACS
GTO clusters (Postman et al. 2005). The histogram on the
left side shows the distribution of the velocity dispersions of
a sample of groups and clusters in the SDSS, as described by
von der Linden et al. (2007). This sample is based on the C4 clus-
ter sample (Miller et al. 2005), but redefines the cluster centres
and velocity dispersions. In particular, the velocity dispersions
are computed in a similar fashion to those for the EDisCS sam-
ple. The dashed lines show howσ is expected to evolve with red-
shift (Poggianti et al. 2006). From these curves, it is apparent that
EDisCS is a high-redshift cluster sample for which a majority of
the clusters can be progenitors of “typical” low-redshift clusters.
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Fig. 19. The distribution of velocity dispersion σ vs. lookback time
for EDisCS and for two other well-studied cluster samples at simi-
lar redshifts, as well as for a well-studied local sample. The figure
shows: SDSS (blue histogram) at z < 0.1, MORPHS (red circles) at
0.37 < z < 0.56, EDisCS (black triangles) at 0.40 < z < 0.96, and
ACS GTO (blue squares) at 0.8 < z < 1.3. The EDisCS clusters fill
the gap in lookback time between the MORPHS and the ACS GTO
clusters and have a large range in σ. The dashed lines show how σ
is expected to evolve with redshift from z = 1 to z = 0 (Poggianti
et al. 2006). From these curves it is apparent that EDisCS is a high
redshift cluster sample for which a majority of the clusters can be pro-
genitors of “typical” low redshift clusters. References for the plotted
velocity dispersions: SDSS: von der Linden et al. (2007); MORPHS:
Girardi & Mezzetti (2001); EDisCS: Halliday et al. (2004) and this
paper; ACS GTO: Gioia et al. (2004); Demarco et al. (2005); Gal &
Lubin (2004); Demarco et al. (2004); see also Postman et al. (2005).
The shown SDSS sample contains 488 clusters selected to have σ >
200 km s−1 and σ/uncertainty(σ) > 4 as measured by von der Linden
et al. (2007) for a subset of the C4 cluster sample originally compiled
by Miller et al. (2005).

9. Summary

As part of the ESO Distant Cluster Survey (EDisCS), we
have carried out spectroscopic observations with VLT/FORS2
of galaxies in 20 survey fields. In our first paper (Halliday et al.
2004), data for 5 fields were presented, and in this paper we have
presented the data for the remaining fields. We have provided
details of the target selection procedure, and we have shown
how a conservative use of photometric redshifts has given an
efficiency increase of almost a factor of 2, while only missing
about 3% of the cluster members being targeted. For all in-
tents and purposes, we expect that our spectroscopic sample of
galaxies at the targeted redshifts behaves as an I-band selected
sample. In the data reduction, we have paid particular attention
to the sky subtraction. We have implemented the method from
Kelson (2003) of performing sky subtraction prior to any re-
binning/interpolation of the data. This method delivers photon-
noise-limited results, whereas the traditional method of subtract-
ing the sky after the data have been rebinned/interpolated results
in substantially larger noise for spectra from tilted slits (about
half of our slits are tilted to be along the major axes of the galax-
ies). The difference between the two methods is found where the
gradient in the sky background is large, i.e. at the edges of the

skylines (cf. Kelson 2003). For our data, the difference in noise
can reach a factor of 10. The difference increases with the total
number of collected sky counts, indicating that the longer the to-
tal exposure time is, the more of a problem the excess noise in the
traditional sky subtraction becomes. We provide data tables con-
taining position, redshifts and I-band magnitude for galaxies in
14 fields. Cluster redshifts and velocity dispersions are presented
for 21 clusters located in these fields. Together with the clusters
from Halliday et al. (2004), velocity dispersions in the range
166 km s−1−1080 km s−1 are available for 26 EDisCS clusters
with redshifts in the range 0.40−0.96. For clusters with at least
20 spectroscopically-confirmed members (9 clusters out of the
21 clusters from this paper), we have performed the Dressler-
Shectman test for cluster substructure. Significant detections
were obtained for 2 of the clusters. Combined with the results
from Halliday et al. (2004) substructure is detected at the 95%
confidence level for 4 clusters out of 14 clusters tested. We have
taken a first look at the comparison between the velocity disper-
sions from the weak-lensing analysis (Clowe et al. 2006), and
those derived using spectroscopic redshifts. The two quantities
show a reasonable agreement. The few clusters with detected
substructure do not show an offset from the rest of the clusters,
possibly indicating that the detected substructure does not have a
strong effect on the measured spectroscopic velocity dispersions.
A detailed analysis of the comparison between lensing and spec-
troscopic velocity dispersions will be presented in a future paper
(Clowe et al., in prep.).

We note that the EDisCS clusters, of which many have
fairly modest velocity dispersions (∼500 km s−1), is a high-
redshift cluster sample for which a majority of the clusters can
be progenitors of “typical” low-redshift clusters. Therefore, both
this property and the large range of masses spanned qualify the
EDisCS cluster sample as an unprecedented and unique dataset
to study the processes affecting cluster galaxy evolution as a
function of cluster mass. Future papers include studies of the op-
tical and NIR luminosity functions, the stellar masses, the stellar
populations, the spectral types, the gas phase metallicities, the
star formation histories, the dependence of galaxy properties on
density, the bar fractions, the Fundamental Plane and the Tully-
Fisher relation.
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Appendix A: Quantitative comparison
of the performance of the two sky subtraction
methods

To quantify the performance of the two sky subtraction meth-
ods (traditional and improved), we will use the values in the
sky-subtracted 2D spectra (Iskysubtr). We will only use the pixels
located in the manually-determined background regions, which
are located away from the known objects on the slits. In these
regions, there is practically no signal from astronomical objects
(galaxies, stars), so in the sky-subtracted spectra the pixel values
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Fig. A.1. Illustration of the performance of the two sky subtraction methods for the spectra from all the masks and for all wavelengths. The figure
shows histograms of Iskysubtr/σCCD, where Iskysubtr are the pixel values in the background-subtracted 2D galaxy spectra, and σCCD are the corre-
sponding 2D spectra giving the standard deviation expected from the CCD noise model (photon noise and read-out noise; Eqs. (A.1) and (A.4)).
Only pixels in the manually-determined background regions were used to make the histograms, thus excluding practically all signal from known
objects in the spectra (galaxies, stars). The histograms therefore illustrate the scatter caused by both natural noise sources (photon noise and read-
out noise) and by possible imperfections in the sky subtraction. Solid/blue histograms: improved sky subtraction (i.e. sky subtraction performed on
the unrebinned data); dash-dotted/red histograms: traditional sky subtraction (i.e. sky subtraction performed on the rebinned data). Dotted/green
curves: Gaussians with σ = 1, for reference. Panels a)−c) show unrebinned data (where sky-subtracted frames are only available for the improved
sky subtraction) while panels d)−f) show rebinned data (where sky-subtracted frames are available for both types of sky subtraction). Panels a)+d)
show data from all slits, while the data have been split in tilted and untilted slits in panels b)+e) and c)+f), respectively. The main conclusions from
this figure are: (i) The result from the improved sky subtraction is close to the CCD noise limit, since the data in panel a) [solid/blue curve] agree
so well with a σ = 1 Gaussian [dotted/green curve]; (ii) The improved sky subtraction is better than the traditional one, with a large improvement
for tilted slits (panel e)) and a smaller improvement for untilted slits (panel f)).

will scatter around zero. The scatter will come from two sources:
“natural” sources found in any CCD frame (photon noise and
read-out noise) and possible extra noise from an imperfect sub-
traction of the skylines. The scatter will vary greatly with wave-
length due to the emission-line nature of the sky background
spectrum. To normalise things, we will divide the sky-subtracted
2D spectra by the corresponding 2D spectra giving the noise ex-
pected from the CCD noise model (photon noise and read-out
noise). For uncorrelated pixel values, such as those in the com-
bined but unrebinned (uninterpolated) spectra pixelised in the
original coordinates (x, y), the expected noise (in ADU) from
the CCD noise model is

σunrebinned
CCD =

√
Iunrebinned
non skysubtr

naveK
+

(
RADU√

nave

)2

, (A.1)

where Iunrebinned
non skysubtr (in ADU) represents the combined, non-sky-

subtracted 2D spectrum, a spectrum that was created as an aver-
age of nave individual exposures each with conversion factor K
(in e−/ADU) and read-out noise RADU (in ADU). For our dataset,
we have K = 0.70 e−/ADU and RADU = 4.14 ADU for chip 1,
and 4.50 ADU for chip 2.

For the rebinned (interpolated) spectra pixelised in (xr, yt),
things are more complicated due to the correlated errors in-
troduced by the interpolations (first in y to remove the spatial
curvature, and then in x to apply the 2D wavelength calibra-
tion). In principle, one could calculate the expected noise in
the rebinned 2D spectrum, σrebinned

CCD , by following how the errors
propagate and become correlated through the two interpolations
(rebinnings). In practice, this is complicated, so we will take a
simpler approach and calculate a quantity σ̃rebinned

CCD that is equal to
σrebinned

CCD on average and thus equally suitable for statistical com-
parisons. Imagine two pixels in the unrebinned spectrum, with
values f1 and f2 drawn from identical Gaussian parent distribu-
tions with standard deviation σ f . We do a linear interpolation
defined by

g = α f1 + (1 − α) f2, 0 ≤ α ≤ 1 (A.2)

to derive the value g in the rebinned pixel. The expected stan-
dard deviation of g, σg, can be calculated from Eq. (A.2) using
the propagation of errors formula for uncorrelated errors, which
gives σ2

g = α
2σ2

f + (1 − α)2σ2
f . This reduces to

σg

σ f
=
√

2α2 + 1 − 2α. (A.3)
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Fig. A.2. Illustration of the performance of the two sky subtraction methods for the spectra from all the masks as function of wavelength. The
data are plotted against wavelength in bins of 1.6 Å. Panel a) shows a sky spectrum for reference. Panel b) shows σ(Iskysubtr/σCCD), which is the
standard deviation of the Iskysubtr/σCCD values in the given bin. Results from both sky subtraction methods are plotted. A value of 1 represents
the noise floor set by photon noise and read-out noise. Panel c) shows the ratio of σ(Iskysubtr/σCCD) for the two methods, illustrating that the
traditional sky subtraction has several times more noise than the improved sky subtraction at the locations of skylines. This plot is based on all
masks; had we only plotted the masks with the longest exposure times (and hence the largest number of collected sky counts) the difference
between the two methods would have been larger. Panels b) and c) are for spectra from tilted slits, whereas panels d) and e) are for spectra from
untilted slits.

This has the following well known consequences: For α = 0 (i.e.
no interpolation), we obtain σg/σ f = 1, meaning that the noise
does not change (trivial). And for α = 0.5 (i.e. taking the average
of two values), we obtain σg/σ f = 1/

√
2, meaning that the noise

goes down by a factor of
√

2, at the expense of inheriting corre-
lated errors with the neighbouring pixel. The two values 1 and
1/
√

2 are the extremes of Eq. (A.2). The mean value is found by
integrating over α from 0 to 1 and comes out to ≈0.81. When we

perform another linear interpolation orthogonal to the first one
the same arguments apply, and the noise goes down by another
factor of ≈0.81 on average, i.e. by a factor of ≈0.66 in total. The
following 2D spectrum

σ̃rebinned
CCD ≡ 0.66

√
Irebinned
non skysubtr

naveK
+

(
RADU√

nave

)2

(A.4)
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Fig. A.3. Illustration of the fact that the traditional sky subtraction
method has the highest extra noise at the edges of the skylines, i.e.
where the gradient in the sky background is the largest (cf. Kelson
2003). This figure is akin to a zoom of Fig. A.2 centered at the strong
6300 Å skyline, but only data from a single mask have been used (and
we note that the y-axis range for panel b) has been increased). If this
figure had been made using all 51 masks it would have looked rather
similar, but the peaks in panel b) and c) would not have been so sharp
due to the small wavelength shifts that exist between the masks due to
instrument flexure. The dotted lines indicate the wavelength region used
for the statistics shown in Fig. A.4.

will therefore on average provide the correct expected noise in
the rebinned spectrum (i.e. when averaging over all the pixels
in the spectrum), but for individual pixels the correct factor may
not be 0.66 but somewhere between 0.5 and 1.

We note that we are concerned with the expected noise in a
single pixel. If we had wanted to calculate the expected noise in,
e.g., the sum of the values in a box of 10× 10 pixels, the answer
would have been different.

In the following, we will simplify the notation and use σCCD
to denote σunrebinned

CCD (Eq. (A.1)) when dealing with the unre-
binned data, and σ̃rebinned

CCD (Eq. (A.4)) when dealing with the re-
binned data.

Our basic quantity for the analysis of the performance of
the two sky subtraction methods is Iskysubtr/σCCD (for pixels in
the background regions, which will be implicit from now on).
Figure A.1 shows histograms Iskysubtr/σCCD. In the first row of
panels, the unrebinned data have been used, and here only the
improved sky subtraction is available. Also shown are Gaussians
with σ = 1, for reference. Panel (a) is for all the slits, whereas
panels (b) and (c) show data from tilted and untilted slits, re-
spectively. The histograms of Iskysubtr/σCCD in panels (a)−(c)
agree very well with the σ = 1 Gaussians, which indicates that
the improved sky subtraction is very close to the noise floor set
by photon noise and read-out noise. The second row of panels
are for the rebinned data. Here we have used the approximate

Fig. A.4. Illustration of how the noise in the sky-subtracted spectra de-
pends on the collected sky counts. Only data in the narrow wavelength
range 6300 ± 8 Å have been used (cf. Fig. A.3). Data from all 51 masks
have been used. The x-axis shows the mean collected sky counts over
the total exposure time for the given spectrum, with the mean being
taken over the used wavelength range. The quantity on the x-axis thus
depends linearly on the total exposure time and on the sky brightness
at 6300 Å. The y-axis shows σ(Iskysubtr/σCCD) which was also used in
Figs. A.2 and A.3, just here computed in the single wavelength bin of
6300 ± 8 Å instead of in multiple bins of 1.6 Å. The quantity on the y-
axis is the noise relative to σCCD (the noise expected from photon noise
and read-out noise). The horizontal dot-dashed line at 1 represents the
noise floor set by photon noise and read-out noise. The points for the
traditional sky subtraction show a square root like behaviour. Since
the quantity on the y-axis has already been divided by σCCD (which es-
sentially is proportional to the square root of the quantity on the x-axis)
the plot indicates that the extra noise in the traditional sky subtraction
goes linearly with the number of collected sky counts.

formula for σCCD (Eq. (A.4)). The histograms for the improved
sky subtraction (blue solid histograms) still resemble the σ =
1 Gaussians quite well, indicating that the used approximation is
valid on average. For this reason, we will only use the rebinned
data in the following figures (Figs. A.2−A.4), since here we can
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compare the two sky subtraction methods (the traditional sky
subtraction is by its nature only available for the rebinned data).
The second row of panels of Fig. A.1 also show histograms of
Iskysubtr/σCCD for the traditional sky subtraction (red dash-dotted
histograms). It is seen that these histograms are wider than those
for the improved sky subtraction, showing that the traditional sky
subtraction has larger noise than the improved sky subtraction.
This is particularly the case for spectra coming from tilted slits
(panel e), as expected.

Figure A.2 plots Iskysubtr/σCCD in a different way. The data
are split in bins of 1.6 Å in wavelength. Instead of plotting a
histogram of the Iskysubtr/σCCD values, a robust (biweight) esti-
mate of their standard deviation, σ(Iskysubtr/σCCD), is calculated
and plotted versus wavelength, see panel (b) (tilted slits) and
(d) (untilted slits). The results from both sky subtraction meth-
ods are plotted, and their ratio is plotted in panels (c) and (e).
Panel (a) shows a sky spectrum for reference, and it is seen that
the traditional sky subtraction has several times larger noise than
the improved sky subtraction at the location of the skylines. It is
also seen that this difference in noise increases with the strength
of the skyline. This indicates that the extra noise found in the
traditional sky subtraction is a stronger function of the sky level
than the square root which enters σCCD (Eq. (A.4)).

Figure A.3 is akin to a zoom of Fig. A.2 centered at the
strong 6300 Å skyline. The figure shows that the traditional sky
subtraction method has the highest extra noise at the edges of
the skylines, i.e. where the gradient in the sky background is the
largest (cf. Kelson 2003). Panel (c) shows that for tilted slits in
this particular mask the noise in the traditional sky subtraction
is 7−8 times larger than the noise in the improved sky subtrac-
tion at the edges of this skyline.

Figure A.4 showsσ(Iskysubtr/σCCD) versus the number of col-
lected sky counts for both sky subtraction methods and for tilted
slits (panel a) and untilted slits (panel b). As before, the quan-
tity σ(Iskysubtr/σCCD) would be unity if the noise in the sky-
subtracted spectra was at the noise floor set by photon noise
and read-out noise. What is seen most clearly in panel (a) is
that the improved sky subtraction (blue crosses) is almost at
the noise floor, with just a small excess noise that increases
weakly with the number of collected sky counts. The tradi-
tional sky subtraction (red triangles) is much above the noise
floor, and σ(Iskysubtr/σCCD) increases with the number of col-
lected sky counts in a way resembling a square root function.
Sinceσ(Iskysubtr/σCCD) has already been divided byσCCD (which
essentially is proportional to the square root of the number of
collected sky counts), the plot indicates that the extra noise in
the traditional sky subtraction goes linearly with the number of
collected sky counts. This has the implication that for increas-
ingly long total exposure times, the systematic extra noise in the
traditional sky subtraction becomes larger and larger compared
to the photon noise.
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