A Exercises 1

A.1 Magnitude of 4-velocity

Calculate the magnitude (vector length) of the 4-velocity u, defined by

e Use the definition of the 4-coordinates.

e Since this is a scaler, you can choose to work in any inertial frame - choose the easiest one.

Solution: Section 2.2.5

A.2 4-acceleration

Show that the 4-acceleration is perpendicular to the 4-velocity w.r.t to the metric defined

Solution: Equation 28
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A.3 Coordinate transformation to spherical coordinates

Calculate the metric tensor of Minkowski space-time in spherical coordinates, defined by

x = rsinfsing
= rsinfcos¢o
z = rcosf

e Calculate the differentials dx, dy, dz by deriving the transformations with respect to the new variables (r, 0, ¢).
Note that © = x(r, 6, ¢) - you will use the chain rule.

e Plug your results into the line element ds? of the Minkowski space-time in Cartesian coordinates.

e By inspection of the result, find the metric tensor for Minkowski space-time in spherical coordinates.

Solution: Exercise A.4 with a =0, or explicitly:

dx
dy
dz

sOcodr+rcOcopdd —rslspdo
sOsodr +rclsopdd +rsbcodp
cOdr —rs6df
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da? + dy? + dz*
= 20 pdr? + 12 c?0c? pdo? + r?s? 0% pdg?
+2rs6clc? pdrdd — 2rs’0s¢codrdd — 2risfchsdcpdfde
+520s% ddr? + r? 0% pdb? + 1% s? 0 c? pdop?
+2rs0cOs? ¢drdd + 2rs? s dcpdrdd + 2r’sbcls ¢ cpdddo
+c?0dr? — 2rsfcOdrdd + r* s* 0do*
= dr? (52 0(c* ¢ +5°¢) +c*0) + dp? (7“2 s?0(c* ¢ +5¢))
do? (7“2 20(c? p+s2p) +1r2s? 0) + 2rsfch(c? ¢ +s*¢p—1)drdd
= dri(s*0 +c?0) +r2do* 4 r*dp*s* 0
dr? +12d0? + r?s? 0d¢® = dr? + r2dQ
ds?> = —cdt® + dr® + r2d0® + r?sin® 0d¢? = —c2dt® + dr® + r?2dQ

A.4 Coordinate transformation to elliptical coordinates

Calculate the metric of Minkowski space-time for the transformation to elliptical coordinates, defined by

T = V/r2+4+a?sinfsing
= Vr2+a?sinfcos¢

z = rcosf

For a = 0, this is the same as in exercise A.3. The path of calculation is the same.

Solution:

dr = ————sfcodr+r2+a2chcodd —\/r?+ a2sspdd

VT T a
r
dy = ———=50sddr+\Vr2+a2cOsoddd+/r2+a?s0cod
Y= JEratte ¢ i
dz = cOdr—rs6dfd (469)
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da? + dy? + dz2?
2
— Ti 2 2 2 2 2\ .2 2 2 2 2\ 2 2 2
T 22’ 0 ¢ gdr” + (r° +a”)c*0c” ¢db” + (r° + a”) s 0s” ¢pdo

+2rsfchc? gpdrdd — 2rs? s pepdrdp — 2(r2 + a?)sOchsdcpdddp
2
_|_

R s?0s% gpdr® + (r* + a®) ? 0% ¢df* + (r* + a*) 5% 0 ¢ pdp?
r+a

+2rs6chs? pdrdd 4 2rs*0sgcpdrdd + 2(r> + a*)shchs dcpdfde
+c20dr® — 2rs0cOdrdd + r? s® 0d6?
2
= dr? (r2:a2 s?0(c® ¢ +5% ¢) + ¢ 0) +d¢? ((r* +a®)s*0(c* ¢ +5° )
do® ((r* +a®) c®0(c* ¢ +5° @) +1%5%0) + 2rsOcb(c® ¢ +s* ¢ — 1)drdd
28204+ 1r2c20 +ac?0
r2 4+ a2

2 2020
drz% +d0” (r* +a®c0) + d¢*s* 0(r® + a?)
r+a

= ar?l +d0* (r* + a*c* 0) + d¢*s* 0(r® + a®)

2

ds®> = —c2dt* + dr®
r2 4+ a?

+ p?db?* + (r* + a®) sin? Od¢>

(with p? = 72 + a? 2 0). This will be the starting point for deriving the Kerr metric.

A.5 Lorentz transformation

A Lorentz transformation is defined by (ct,z,y,2z) — (ct’, 2", ¢y, 2') :

w
Il
w

Show that a space-time interval |s’|, i.e. the vector length of 4-vector &, is the same as for the original vector ’s’ -
i.e. that vector lengths are invariant under Lorentz transformations.

Solution: Equation 40

A.6 Keplerian angular velocity

Calculate for a circular orbit around mass M the angular velocity w, which is a function of radius.
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Solution: Force equilibrium

GM 02
r2
GM w?r?
r2 r
GM
w = —_—

This will be needed for accretion disks.

A.7 Effective potential & Keplerian orbits

Re-educate yourself on Keplerian orbits in a Newtonian potential, central mass M.

Start from E = Fyin + Epot

Express the velocity v in a radial and tangential component

Introduce the angular momentum ! = r2¢

Read off the form of the effective potential Vg ()

What are the turning points of the motion, as a function of E and [? (dr/dt = 0)
In the energy equation, transform from 7 to g—;

Transform once again to u = 1/r

Take the derivative %

The second order differential equation for u(¢) obtained is "easy”. Can you guess the solution?

Verify that u(¢) = 1 + e cos ¢ solves the equation

What are the turning points, as a function of [ and e ?

Solution:

E = 11)2*%
2 r
1 1 5. GM
E = 24 .22 G4
UL
1 ? GM
E = 24 2%
ZT 2r2 r
12 GM
Vb = == —
ff 2r2 r
- —GM £+ vVG?M? +2FI?
=T 2F
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1/dr\*., 12 GM
E = (=) ¢#+-—-—
2 <d¢> ¢ o T
p oo L(d\'E P oM
2 \do) 4 2r2 r
1?1 1?1
“=care M= et
b o_ L(GM/Prdu\* P Pu’GPM?  G*MPu
) do i 204 12
5 — G?M? (1 [du 2+u2
- T \2\de 5
Differentiating
2M2
0 = Glz (W'u" +u'u—u')
0 = v’ +u—-1
u(¢) = 1+ecos(¢— ¢o)
(6) = !
r =
GM 1+ ecos(¢ — ¢o)
!
T GM1xe

This will be useful when comparing orbits around a black hole with Newtonian orbits.
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