
H Exercises 8

H.1 Re-deriving the vacuum solution

From these expressions for the Einstein tensor, where we had used the ansatz g = diag(�e⌫ , e�, r2, r2 sin2 ✓, can
you re-derive the vacuum solution?
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• Start with the 00-equation. The resulting di↵erential equation (for e�) can be solved and has an integration
constant free. Name it simply C1.

• Then do the 11-equation. You get another di↵erential equation involving also e�, which you determined
already. Here, you get another integration constant C2.

• C2 is fixed immediately by demanding flatness of the metric for r ! 1. C1 would require comparing the
weak field approximation with Newton’s gravity again, the result is simply C1 = rS .
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The flatness in the far field requires C2 = 0.
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H.2 Potential energy of a sphere

What is the gravitational potential energy of a sphere with constant density, mass M and radius R? Integrate the
energy of thin shells from 0 to R.

Solution:
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See also equation 457.

H.3 Tidal forces

Consider a small body with mass m and radius r at a distance d in the gravitational field of a larger body with
mass M . Calculate the tidal force as the di↵erence between gravitational force at the closest (or furthest) point
and the center of the small body. Assume r ⌧ d.

Solution:
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(Equation 472)

H.4 Binary mass function

Assume a binary star with masses M1 and M2, orbiting the common center of mass with semi-major axes of a1 and
a2 wtht a period P .

• From the definition of the center of mass, what is the relation between M1, M2, a1, a2 ?

• Express the total semi-major a = a1 + a2 axis in terms of M1, M2, a1, a2.

• Apply Kepler’s third law for a and M = M1 + M2, and bring all masses on one side of the equation.

• Assume circular orbits, such that vij = 2⇡aj/P (j=1,2). Eliminate therewith the semi-major axis in the
expression.

• Spectroscopically one can observe Vj = vj sin i, where i is the unknown inclination. Plug that in

• Bring all unknowns onto one side of the equation (M1, M2, sin i). On the other side are the observables P, V .
This is called the binary mass function.

Solution: Equations 474, 475, 476

217


