H Exercises 8

H.1 Re-deriving the vacuum solution

From these expressions for the Einstein tensor, where we had used the ansatz g = diag(—e”, e, r2,r2sin? 6, can

you re-derive the vacuum solution?
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e Start with the 00-equation. The resulting differential equation (for e*) can be solved and has an integration
constant free. Name it simply Cj.

e Then do the 1l-equation. You get another differential equation involving also e, which you determined
already. Here, you get another integration constant Cs.

o (5 is fixed immediately by demanding flatness of the metric for r — co. C7 would require comparing the
weak field approximation with Newton’s gravity again, the result is simply C; = rg.

Solution:
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The flatness in the far field requires Co = 0.
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H.2 Potential energy of a sphere

What is the gravitational potential energy of a sphere with constant density, mass M and radius R? Integrate the
energy of thin shells from 0 to R.

Solution:
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See also equation 457.

H.3 Tidal forces

Consider a small body with mass m and radius r at a distance d in the gravitational field of a larger body with
mass M. Calculate the tidal force as the difference between gravitational force at the closest (or furthest) point
and the center of the small body. Assume r < d.

Solution:
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(Equation 472)

H.4 Binary mass function

Assume a binary star with masses M7 and Ms, orbiting the common center of mass with semi-major axes of a; and
as wtht a period P.

e From the definition of the center of mass, what is the relation between My, Ms, a1, ao 7
e Express the total semi-major a = a1 + a9 axis in terms of M7, My, aq,as.
e Apply Kepler’s third law for a and M = M; 4+ M>, and bring all masses on one side of the equation.

o Assume circular orbits, such that v;j = 2ma;/P (j=1,2). Eliminate therewith the semi-major axis in the
expression.

e Spectroscopically one can observe V; = v; sin¢, where 7 is the unknown inclination. Plug that in

e Bring all unknowns onto one side of the equation (M7, Ma,sini). On the other side are the observables P, V.
This is called the binary mass function.

Solution: Equations 474, 475, 476
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