
I Exercises 9

I.1 Virial theorem

Let’s derive the virial theorem for system of particles moving under each others, Newtonian gravity. Consider the
scaler S

S =
NX

k=1

~pk.~xk

For a su�ciently large, symmetric stellar system dS/dt = 0. Hence, calculate dS/dt to arrive at dS

dt
= 2Ekin, total +

Vtotal. You will need to use these (rather obvious) relations:

• d~xk
dt

= ~pk

• ~pk = mk~vk

• Ekin, k = 1
2mk(~vk)2

• ~Fk = ~pk

dt

• ~Fk =
P

N

j=1,j 6=k
~Fjk

• ~Fjk = �~Fkj

• ~Fjk = G mj mk

|~xj�~xk|3 (~xj � ~xk)

Solution: Section 15.2

I.2 Inverting the Kerr metric

The Kerr metric in spherical, Boyer-Lindquist coordinates is:
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Here, ⇢2 = r2 + a2 cos2 ✓. Key for inverting it is the determinant of the (t, �) sub-matrtix. Show that

Dt� = � sin2 ✓ (r2 � r rS + a2)

Solution: Equation 554
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I.3 Event horizon(s) of the Kerr metric

As for Schwarzschild, the point at which the coe�cient of the dr2 term in the metric gets infinite corresponds to
the event horizon. Calculate these radii. The outer is one is called r+ .

Solution:
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Hence:

r2 � rS r + a2 = 0

and

r± =
rS
2

±
r

r2
S

4
� a2 =

GM

c2
±
r

G2M2

c4
� a2

I.4 A useful relation

Show that for the Kerr metric r2
+ + a2 = rS r+ .

Solution:
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