Measurement of the optical Polarization

 of the Crab pulsar with OPTIMAGottfried Kanbach, Helmut Steinle, Fritz Schrey, Stephan Kellner (MPE), Agnieszka Woźna (MPE and CAMK, Torun)

- Description of the MPE-OPTIMA ("Optical Pulsar Timing Analyzer ") high-speed photo-polarimeter
- Measurements on the Crab pulsar in January 2002 at Calar Alto
- Verification of the polarimeter and data analysis
- Results

The OPTIMA photometer

Target
Acquisition CCD Camera
single photon counting and timing:
APDs: high Q.E. $\sim 60 \%(450-950 \mathrm{~nm}) \rightarrow \sim 6$ times more sensitive than PMT system Timing with GPS: ~ $2 \mu s$

Options:

Linear Polarization using a rotating filter, 4 colour-band prism spectrometer

Target Aquisition

The OPTIMA Rotating Polarization Filter

1.

Rotating polarisation filter unit 2. \& 3. Hall sensor switch (reference) 4.
5. Polaroid filter motor driven roller bearing (typical rotation frq.: 3 Hz)

Advantage: total field of view is analysed for polarisation simultaneously -> essential for Crab nebula!

Disadvantage: only 50\% transmission

Assignment of polarization angle to individual recorded photons

Verification of Polarimeter: Morning Sky Polarization

Rayleigh scattered sunlight (dawn or dusk) is highly polarized ($\sim 50 \%$)
The E-vector in the zenith is orthogonal to the azimuth of the Sun.
For this exposure: Sun azimuth $111^{\circ}\left(E\right.$ of N), E-Vector: 21° (E of N)
Filter Rotation Angle 0° corresponds to E-vector 339° (E of N)
i.e. 42° filter rotation angle corresponds to E -vector 21° (E of N)

Dawn Sky Background 11-01-2002 06-38-10
Resolution $=3^{\circ}$

OPTIMA at the Calar Alto 3.5 m Telescope (Jan. 2002)

Crab Observations

Jan 9.-13., 2002 Calar Alto 3.5 m telescope
white light: ~ 6 hours
polarization: ~ 3 hours
colour filters: ~ 3 hours
High statistics single pulse studies
Time resolved Polarimetry
3 colour filter photometry (red, green, blue)
Simultaneous optical - radio observations
(Collaboration with Copernicus University,Torun)

The small scale polarization of the Crab Nebula (Schmidt \& Angel, 1979)

close to pulsar: degree: 8-13\%
angle ~ 140°
(Schmidt\&Angel, 79)

Nebula Polarization (OPTIMA)

Crab single rotation

 andCrab Pulsar, OPTIMA, Calar Alto 3.5m, Jan 10, 2002 20:09:01 UT + t(s), no Filter

single rotation variability studies (-> next talk by Aga Wozna)

summed lightcurve

continuous emission

Crab Polarization (OPTIMA)

Measure lightcurves for different positions of the rotating polarisation filter
at $\left[\phi_{0}, \phi_{0}+90^{\circ}\right]$ and $\left[\phi_{0}+45^{\circ}, \phi_{0}+135^{\circ}\right]$.
Calculate Stokes-Parameters:
$Q=I\left(0^{\circ}\right)-I\left(90^{\circ}\right), U=I\left(45^{\circ}\right)-I\left(135^{\circ}\right)$

Stokesparameters Q,U (normalized to first peak $=100$))

angle of polarization:
$\Theta=\frac{1}{2} \cdot \arctan \frac{U}{Q}$

degree of polarization: $\quad V=\frac{\sqrt{Q^{2}+U^{2}}}{I}$

Polarisation Properties of PSR 0531+21

Polarization for Synchrotron emission for relativistic particles with small pitch angles (Epstein, 1973)

The polarization angle:
 Magnetic field Geometry in the Emission regions

Two pole emission model (Smith et al., 1988):

Explanation for the symmetric structure of the Stokes diagram

Open Questions

what is this overshoot

what is this feature on the rising flank of peak 1 ?
is there a similar feature on the rising flank of peak 2?
at peak 1?

there is a sharp change of slope of the angular swing at peak 1

