ARGOS will be widely spread over the LBT. The main elements in the system are the laser units, the launch system and the wavefront sensors.
  • The laser units contain all the hardware that is required to generate the laser beams, steer them to the required position, control the polarization and deliver them to a common pupil location.
  • The launch system expands the beam before it is folded with two large mirrors towards sky.
  • A dichroic beam splitter in front of the AGW unit separates the green laser light from the science path. The laser light is then folded into the wavefront sensor unit.
  • Within the wavefront sensor according collimation and fold optics sends the light through the optical shutter and onto the Shack Hartmann detectors.
  • An appropriate instrument control system connects the devices amongst each other and ensures the operation.
  • The adaptive optics realtime control takes the signals from the wavefront detectors and the tip-tilt sensor and steers the LBT adaptive secondary mirrors. System internal realtime loops ensure the position stability of the laser beacons on the wavefront sensor.
  • Laser Unit : behind the platform of LUCI and mounted between the wind braces
  • Launch Mirror : on the top of  the secondary mirror
  • Wavefront Sensor : on the derotator-structure

The parts of ARGOS are colored (not complete on DX).

The basic functional scheme of the whole ARGOS system is not very different to any other Rayleigh guided adaptive optics system:

A main time base in conjunction with electronic delay generators synchronizes the whole process of laser firing and detection. After the main trigger and appropriately tuned delays, all laser heads will fire simultaneously a pulse with ~20-30ns duration. With the pulses propagating through atmosphere a small percentage is scattered by molecules on its path. Opening the Pockels cell shutters exactly after twice the time of flight to 12km distance, and closing after 2µs again, collects the photons on the detector out of a 300m long column at that distance. With the lasers being triggered at a 10kHz rate, the shutter will be opened in front of the CCD ten times before the accumulated image is transferred to the frame storage area of the detector. Reading the CCD thus occurs at a framerate of 1kHz. The transferred image then will be pre-processed for dark and line-to line variations, and sent then to the slope computer, measuring the centroids in the subapertures. Those are then transferred to the adaptive secondary for re-construction and mirror setting.

Launch system

A laser launch telescope (LLT) associated with each eye of the LBT serves to expand three laser beams and relay them from the laser box to the sky.
Left: Launch mirror above of the secondary mirror. The right figure shows the large lens and the folding mirror on top of the beam expander tube. 

Laser System

Layout of lasers, pre-optics, diagnostics and entrance of the launch telescope.

Tip-tilt control

As the light path from the laser up to the emission level and back down to the telescope is almost identical, the tip-tilt signal will cancel out. Consequently it is important to have a rapid tip-tilt signal available to take out this low order, but potentially high power effect. The tip-tilt sensor will be placed on the on-axis first light wavefront sensor board, the so called “W-unit”, developed by the Arcetri group.

Wavefront sensors

Two critical components of the wavefront sensor. The wavefront sensor detector (upper right, pnCCD) and the gating units (upper left, Pockels Cell).
Middle: Draft of the sensor design.

Software and real time control

Sketch of the control loop design.

Go to Editor View