Kinematics and Angular Momentum in the Outer Halos of Early Type Galaxies

Coccato, L., Gerhard, O., Arnaboldi, M., Das, P., Douglas, N. G., Kuijken, K., et al. 2009, MNRAS, 394, 1249 (to the paper)

Over the past years we conducted an observational campain with the Planetary Nebulae Spectrograph (Douglas et al. 2002) aimed to measure the radial velocities of PNe in the halos of ETGs (see Figure 1). In our first official data release (Coccato et al. 2009) we combined absorption line data and PNe radial velocity measurements in 16 ETGs. Our analysis showed that: i) PNe are good tracers of the mean stellar population kinematics, as their kinematics and number density agrees with the stellar absorption line kinematics and surface brightness; ii) outer halos have more complex radial profiles of the lR parameter (a proxy for the angular momentum, Emsellem et al. 2007) than observed within 1 Re. Interestingly, in the halo, some fast rotators have declining lR radial profiles, almost reaching the slow rotator regime, while some slow rotators have slowly increasing lR profiles, which reach the fast rotator regime (see Figure 2); iii) the velocity dispersion profiles fall into two groups, with part of the galaxies characterized by slowly decreasing profiles and the remainder having steeply falling profiles; iv) the halo kinematics are correlated with other galaxy properties, such as luminosity, shape, total stellar mass, V/s, and number of PNe per unit luminosity, with a clear distinction between fast and slow rotators.

Complete paper on ADS











  
Go to Editor View