Ferne Galaxien bestehen hauptsächlich aus Gas und Sternen – wo ist die Dunkle Materie?

16. März 2017
Neue Beobachtungen von rotierenden Galaxien vor rund 10 Milliarden Jahren zeigen überraschenderweise, dass diese massereichen Galaxien vollständig von baryonischer oder "normaler" Materie dominiert werden; Dunkle Materie spielt eine viel kleinere Rolle in vergleichbaren Regionen ihrer äußeren Scheibe als im lokalen Universum. Die internationale Forschergruppe am Max-Planck-Institut für extraterrestrische Physik untersuchte die Rotationskurven in den äußeren Scheiben von sechs Galaxien (bis zu einer Entfernung von ca. 65000 Lichtjahren vom Zentrum) und stellte fest, dass ihre Rotationsgeschwindigkeiten nicht konstant sind, sondern mit größerem Radius kleiner werden. Diese Erkenntnisse werden durch Beobachtungen von mehr als 200 weiteren Galaxien unterstützt, wobei unterschiedliche Schätzungen ihres dynamischen Zustands ebenfalls auf einen hohen baryonischen Massenanteil deuten. Darüber hinaus zeigt die Analyse, dass in diesen frühen Galaxien die Scheibe viel dicker ist und mit turbulenten Bewegungen zur dynamischen Stabilität beiträgt. Diese Ergebnisse wurden nun in einem Artikel in der Zeitschrift Nature veröffentlicht, zusammen mit drei weiteren Artikeln im Astrophysical Journal.

Zahlreiche unterschiedliche Studien der Galaxien im lokalen Universum zeigten über viele Jahre hinweg eindeutige Hinweise auf die Existenz der sogenannten "Dunklen Materie" und dass diese eine wichtige Rolle spielt. Die normale oder "baryonische" Materie kann direkt in Form von hellen Sternen oder als leuchtendes Gas und Staub beobachtet werden; Dunkle Materie hingegen interagiert mit normaler Materie nur durch die Wirkung ihrer Schwerkraft. Insbesondere ist sie für flache Rotationskurven in Spiralgalaxien verantwortlich, d.h. die Rotationsgeschwindigkeiten in Spiralgalaxien sind konstant oder nehmen mit dem Radius zu.

Ein internationales Team von Astronomen, geleitet von Reinhard Genzel am Max-Planck-Institut für extraterrestrische Physik, führte tiefe Beobachtungen von mehreren hundert massereichen, sternbildenden Galaxien im entfernten Universum (bei Rotverschiebungen zwischen 0,6 und 2,6) mit bildgebender Spektroskopie durch. Dies ermöglichte es den Forschern, die Rotationskurven der Galaxien zu bestimmen, die wertvolle Hinweise auf die Massenverteilung sowohl für baryonische als auch für die Dunkle Materie bis zum äußeren Rand der sichtbaren Scheibe liefern – zu einem Zeitpunkt vor 10 Milliarden Jahren, als die Galaxienentstehung ihren Höhepunkt erreicht hatte. Bei sechs Galaxien erhielten die Forscher Daten mit so hoher Qualität, dass sie sogar individuelle Rotationskurven bestimmen konnten; für etwa 100 weitere Galaxien nutzten sie eine neuen Ansatz, die Galaxien zu „stapeln“, um so eine durchschnittliche, repräsentative Rotationskurve zu erhalten.

"Überraschenderweise sind die Rotationsgeschwindigkeiten nicht konstant, sie werden kleiner je größer der Radius wird", sagt Reinhard Genzel, Erstautor einer Veröffentlichung über das Ergebnis in der Zeitschrift Nature. "Dafür gibt es zwei Gründe: Zum einen dominiert in den meisten dieser frühen, massereichen Galaxien eindeutig die normale Materie - Dunkle Materie spielt eine viel kleinere Rolle als im lokalen Universum. Zweitens waren diese frühen Scheibengalaxien viel turbulenter als die Spiralgalaxien, die wir in unserer kosmischen Nachbarschaft sehen. Diese Turbulenz trägt zur dynamischen Stabilität bei, also müssen sie sich nicht so schnell drehen."

Beide Effekte scheinen mit zunehmender Rotverschiebung größeren Einfluss zu haben, sie waren also zu früheren kosmischen Zeiten wichtiger. Dies deutet darauf hin, dass sich im frühen Universum - etwa 3 bis 4 Milliarden Jahre nach dem Urknall - das Gas in Galaxien bereits sehr effizient in der Mitte der ausgedehnten Halos aus Dunkler Materie angesammelt hatte. Für die Dunkle Materie in diesen Halos dauerte es etliche Milliarden Jahre länger, um ebenfalls zu kondensieren, so dass wir ihre dominierende Wirkung erst viel später sehen, in den Rotationskurven moderner Galaxien. Diese Erklärung passt auch zu der Tatsache, dass weit entfernte Galaxien bei hoher Rotverschiebung im Vergleich zu Galaxien mit kleinerer Rotverschiebung viel mehr Gas enthielten und kompakter waren. Durch einen hohen Anteil an Gas kann der Drehimpuls leichter abgebaut und das Gas somit einfacher ins Innere gelenkt werden.

"Beim Vergleich dieser frühen masse- und gasreichen, rotierenden Galaxien mit denen im lokalen Universum ist Vorsicht angebracht", sagt Natascha Förster Schreiber, Co-Autorin bei allen vier Studien. "Heutige Spiralgalaxien, wie unsere Milchstraße, brauchen Dunkle Materie in unterschiedlichem Ausmaß. Andererseits zeigen passive Galaxien im lokalen Universum – also Galaxien, die hauptsächlich aus einer kugelförmigen Komponente bestehen und wahrscheinlich die Nachfahren der von uns beobachteten massereichen, sternbildenden Galaxien sind – einen ähnlich geringen Anteil Dunkler Materie auf galaktischen Skalen."

Zwei weitere Untersuchungen von insgesamt 240 sternbildenden Scheibengalaxien stützen diese Einschätzung. Detaillierte dynamische Modellierungen zeigen, dass Baryonen im Mittel 56% des Gesamtmassenanteils in allen Galaxien ausmachen, für Galaxien bei den höchsten Rotverschiebungen allerdings dominieren sie die Massenverteilung im Innern vollständig. Eine andere Analyse wertete dieselben Daten im Rahmen der Tully-Fisher-Beziehung aus, die einen engen Zusammenhang zwischen der Rotationsgeschwindigkeit einer Galaxie und ihrer Masse bzw. Leuchtkraft beschreibt. Auch in diesem Fall zeigen die Daten, dass massereiche, sternbildende Galaxien bei hoher Rotverschiebung bis hin zur äußeren Scheibe einen höheren Baryonenanteil aufweisen als diejenigen bei niedrigerer Rotverschiebung.

"Die Rechnungen zeigen es ganz eindeutig", stellt Stijn Wuyts von der University of Bath fest, Co-Autor bei allen vier Veröffentlichungen, "die Dynamik ist ein Maß für die Gesamtmasse. Wenn wir das, was wir in Form von Sternen und Gas sehen, abziehen, bleibt nicht viel Raum für die Dunkle Materie in diesen frühen Scheibengalaxien. Die abfallenden Rotationskurven stehen nicht nur im Einklang mit diesen Ergebnissen, sie bieten einen ganz direkten Hinweis auf die Dominanz der Baryonen - vor allem für Forscher, die eine gesunde Skepsis in Bezug auf die Genauigkeit haben, mit der man die Menge an Sternen und Gas in diesen entfernten Galaxien messen kann."

Hinweis:

Die analysierten Daten wurden mit den Integralfeldspektrografen KMOS und SINFONI an den VLT-Teleskopen der ESO in Chile im Rahmen des KMOS3D- und des SINS/zC-SINF-Survey gewonnen. Dies stellt die erste, umfassende Untersuchung der Dynamik einer großen Anzahl von Galaxien im Rotverschiebungsintervall von z~0,6 bis 2,6 dar, über einen Zeitraum von 5 Milliarden Jahren. Das Team, das die Daten für die Nature-Veröffentlichung analysierte und interpretierte besteht aus R. Genzel, N.M. Förster Schreiber, H. Übler, P. Lang, L.J. Tacconi, E. Wisnioski, S. Belli, A. Burkert, J. Chan, R. Davies, M. Fossati, A. Galametz, O. Gerhard, D. Lutz, J.T. Mendel, E.J. Nelson, R. Saglia und K. Tadaki am Max-Planck-Institut für extraterrestrische Physik (MPE), T. Naab am Max-Planck-Institut für Astrophysik (MPA), R. Bender, A. Beifiori und D. Wilman an der Universitätssternwarte München, S. Wuyts an der University of Bath, T. Alexander am Weizmann Institute of Science, G. Brammer am Space Telescope Science Institute, C.M. Carollo und S. Tacchella an der ETH Zürich, S. Genel am Center for Computational Astrophysics, I. Momcheva an der Yale University, A. Renzini am Astronomischen Observatorium Padua, A. Sternberg an der Tel Aviv University.

KMOS wurde in Arbeitsteilung von einem Konsortium britischer (Universität Durham, Universität Oxford, UK Astronomy Technology Centre Edinburgh (ATC)) und deutscher Institute (Universitätssternwarte München, Max Planck-Institut für extraterrestrische Physik) in Zusammenarbeit mit der Europäischen Südsternwarte entwickelt und gebaut. Die Leitung des Projektes haben Ray Sharples (Universität Durham) und Ralf Bender (Universitätssternwarte/Max-Planck-Institut für extraterrestrische Physik).

Weitere interessante Beiträge

Zur Redakteursansicht