Explosion auf einem Weißen Zwerg direkt beobachtet
Wenn Sterne wie unsere Sonne ihren Brennstoff verbraucht haben, schrumpfen sie zu Weißen Zwergen. Manchmal zucken solche Objekte in einer superheißen Explosion noch einmal, eine so-genannte „Nova“, und produzieren einen Feuerball aus Röntgenstrahlung. Mithilfe des eROSITA-Teleskops an Bord des SRG-Weltraumobservatoriums, konnte ein Forschungsteam unter Führung der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) einen solchen Ausbruch im Röntgenlicht jetzt zum ersten Mal direkt beobachten.
„Dabei kam uns auch der Zufall zu Hilfe“, erklärt Ole König vom Astronomischen Institut der FAU in der Dr. Karl Remeis-Sternwarte Bamberg, der gemeinsam mit dem FAU-Astrophysiker Prof. Dr. Jörn Wilms und dem Forschungsteam bestehend aus dem Max-Planck-Institut für extraterrestrische Physik in Garching, der Eberhard Karls Universität Tübingen, der Universitat Politécnica de Catalunya in Barcelona und dem Leibniz-Institut für Astrophysik Potsdam in der renommierten Fachzeitschrift Nature über die Beobachtung berichtet. „Solche Röntgenblitze lassen sich kaum vorhersagen, dauern nur wenige Stunden und das Beobachtungsinstrument muss in dieser Zeit auf den Ausbruch zielen“, schildert der Astrophysiker die Zusammenhänge.
Bei diesem Instrument handelt es sich um das eROSITA-Röntgen-Teleskop, das eineinhalb Millionen Kilometer von der Erde entfernt seit 2019 den Himmel nach weichen Röntgenstrahlen durchmustert. Dabei wurde am 7. Juli 2020 extrem starke Röntgenstrahlung in einem Bereich des Himmels gemessen, der vier Stunden vorher noch völlig unauffällig gewesen war. Als das Röntgen-Teleskop vier Stunden später die gleiche Stelle am Himmel erneut musterte, war diese Strahlung wieder verschwunden. Weniger als acht Stunden hatte der Röntgenblitz also gedauert, der vorher das Zentrum des Detektors völlig überbelichtet hatte.
„Wir durchforsten den eROSITA-Daten regelmäßig nach Objekten, die plötzlich aufleuchten“, sagt Riccardo Arcodia, der zum eROSITA-Team am Max-Planck-Institut für extraterrestrische Physik (MPE) gehört. „Und dieses Aufleuchten war so stark, wir anfangs darüber diskutierten, ob es überhaupt ein echtes Signal war. Uns war sofort klar, dass wir über ein einzigartiges Ereignis gestolpert waren.“
Solche Röntgen-Ausbrüche hatten Theoretiker bereits vor mehr als 30 Jahren vorgesagt. Sie waren bisher aber noch nie direkt beobachtet worden. Diese Feuerbälle aus Röntgenstrahlen entstehen auf der Oberfläche von Sternen, die eine ähnliche Größe wie unsere Sonne hatten, bevor sie ihre Brennstoffvorräte aus Wasserstoff und später aus Helium tief in ihrem Inneren weitgehend verbraucht hatten. Diese alten Sterne schrumpfen sehr stark zusammen, bis ein „Weißer Zwerg“ übrigbleibt, der ähnlich groß wie die Erde ist, aber eine Masse enthält, die ähnlich groß wie unsere Sonne sein kann.
Diese Objekte sind heiß und leuchten daher weiß; allerdings ist diese Strahlung schwach und lässt sich daher von der Erde aus gesehen kaum entdecken. Es sei denn, der alte Stern wird von einem Stern begleitet, in dem das Sonnenfeuer noch brennt und von dem dann Material auf ihn übergehen kann.
„Dieser Wasserstoff kann sich mit der Zeit zu einer nur wenige Meter dicken Schicht auf der Oberfläche der Sternenleiche sammeln“, erklärt FAU-Astrophysiker Jörn Wilms. In dieser Schicht aber erzeugt die riesige Schwerkraft einen gigantischen Druck, der so groß werden kann, dass dort das Sternenfeuer wieder zündet. In einer Kettenreaktion entsteht rasch eine riesige Explosion, in der die Wasserstoffschicht wieder abgesprengt wird. Die Röntgenstrahlung einer solchen Explosion hat dann am 7. Juli 2020 die Detektoren von eROSITA getroffen und überbelichtet.
Explosion eines Weißen Zwergsterns
„Mit Modellrechnungen, mit denen wir ursprünglich die Entwicklung des Röntgen-Instruments begleitet hatten, konnten wir dann in einer aufwändigen Arbeit das eigentlich überbelichtete Bild genauer analysieren und so erstmals einen Blick hinter die Kulissen einer solchen „Nova“ genannten Explosion eines Weißen Zwergs werfen“, schildert Jörn Wilms die weitere Forschung. Nach diesen Ergebnissen sollte der Weiße Zwerg ungefähr die Masse unserer Sonne haben und damit relativ groß sein. Bei der Explosion entstand ein Feuerball mit 327.000 Grad, der damit rund sechzigmal heißer als unsere Sonne war.
Weil bei solchen Novae der Energie-Nachschub fehlt, kühlen sie rasch aus, und die Röntgenstrahlung wird weicher, bis sie schließlich zu sichtbarem Licht wird, das einen halben Tag nach der eROSITA-Entdeckung auch die Erde erreichte und mit optischen Teleskopen beobachtet wurde. „Es tauchte dann ein scheinbar heller Stern auf, der sogar mit dem Auge sichtbar war“, erklärt Ole König. Solche scheinbaren „neuen Sterne“ wurden auch früher schon beobachtet und wegen ihres unverhofften Auftauchens „Nova Stella“ genannt, was „neuer Stern“ bedeutet. Weil diese Nova aber erst nach dem Röntgenblitz sichtbar wird, ist eine Vorhersage für solche Ausbrüche sehr schwierig, die daher eher zufällig die Röntgen-Detektoren treffen. „Da hatten wir wirklich Glück“, freut sich Ole König.
Weitere Informationen
eROSITA ist das Instrument für die weiche Röntgenstrahlung an Bord von Spektrum-RG (SRG), es wurde am 13. Juli 2019 ins All gebracht. Seine große Sammelfläche und sein weites Sichtfeld sind für eine tiefe Durchmusterung des gesamten Himmels im Röntgenbereich ausgelegt. Die gemeinsame russisch-deutsche Wissenschaftsmission wird unterstützt von der Russischen Raumfahrtagentur (Roskosmos) im Interesse der Russischen Akademie der Wissenschaften, vertreten durch ihr Institut für Weltraumforschung (IKI), und der Deutschen Raumfahrtagentur im Deutschen Zentrum für Luft- und Raumfahrt (DLR). Die SRG-Raumsonde wurde von der Lavochkin Association (NPOL) und ihren Auftragnehmern gebaut und wird von NPOL mit Unterstützung des Max-Planck-Instituts für extraterrestrische Physik (MPE) betrieben.
Die Entwicklung und der Bau des eROSITA-Röntgeninstruments wurde vom Max-Planck-Institut für extraterrestrische Physik (MPE) geleitet, mit Beiträgen der Dr. Karl Remeis-Sternwarte Bamberg, der Sternwarte der Universität Hamburg, des Leibniz-Instituts für Astrophysik Potsdam (AIP) und des Instituts für Astronomie und Astrophysik der Universität Tübingen, mit Unterstützung des DLR und der Max-Planck-Gesellschaft. Das Argelander-Institut für Astronomie der Universität Bonn und die Ludwig-Maximilians-Universität München waren ebenfalls an der wissenschaftlichen Vorbereitung für eROSITA beteiligt. Die eROSITA-Daten werden mit dem vom deutschen eROSITA-Konsortium entwickelten Softwaresystem eSASS verarbeitet.